| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7714, see 2onnALT 8610. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7714. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8450 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8466 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7848 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6335 Lim wlim 6336 ωcom 7845 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: 3onn 8611 nn2m 8621 nnneo 8622 nneob 8623 omopthlem1 8626 omopthlem2 8627 pwen 9120 prfi 9281 en2eqpr 9967 en2eleq 9968 unctb 10164 infdjuabs 10165 ackbij1lem5 10183 sdom2en01 10262 fin56 10353 fin67 10355 fin1a2lem4 10363 alephexp1 10539 pwcfsdom 10543 alephom 10545 canthp1lem2 10613 pwxpndom2 10625 hash3 14378 hash2pr 14441 pr2pwpr 14451 rpnnen 16202 rexpen 16203 xpsfrnel 17532 xpscf 17535 symggen 19407 psgnunilem1 19430 simpgnsgd 20039 znfld 21477 hauspwdom 23395 xpsmet 24277 xpsxms 24429 xpsms 24430 unidifsnel 32471 unidifsnne 32472 sat1el2xp 35373 ex-sategoelelomsuc 35420 ex-sategoelel12 35421 1oequni2o 37363 finxpreclem4 37389 finxp3o 37395 wepwso 43039 frlmpwfi 43094 2omomeqom 43299 oenord1ex 43311 oaomoencom 43313 2finon 43446 har2o 43542 |
| Copyright terms: Public domain | W3C validator |