| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7674, see 2onnALT 8564. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7674. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8404 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8420 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7805 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2113 Oncon0 6311 Lim wlim 6312 ωcom 7802 2oc2o 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7803 df-1o 8391 df-2o 8392 |
| This theorem is referenced by: 3onn 8565 nn2m 8575 nnneo 8576 nneob 8577 omopthlem1 8580 omopthlem2 8581 pwen 9070 prfi 9215 en2eqpr 9905 en2eleq 9906 unctb 10102 infdjuabs 10103 ackbij1lem5 10121 sdom2en01 10200 fin56 10291 fin67 10293 fin1a2lem4 10301 alephexp1 10477 pwcfsdom 10481 alephom 10483 canthp1lem2 10551 pwxpndom2 10563 hash3 14315 hash2pr 14378 pr2pwpr 14388 rpnnen 16138 rexpen 16139 xpsfrnel 17468 xpscf 17471 symggen 19384 psgnunilem1 19407 simpgnsgd 20016 znfld 21499 hauspwdom 23417 xpsmet 24298 xpsxms 24450 xpsms 24451 unidifsnel 32517 unidifsnne 32518 sat1el2xp 35444 ex-sategoelelomsuc 35491 ex-sategoelel12 35492 1oequni2o 37433 finxpreclem4 37459 finxp3o 37465 wepwso 43161 frlmpwfi 43216 2omomeqom 43421 oenord1ex 43433 oaomoencom 43435 2finon 43568 har2o 43664 |
| Copyright terms: Public domain | W3C validator |