| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7711, see 2onnALT 8607. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8447 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8463 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7845 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6332 Lim wlim 6333 ωcom 7842 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: 3onn 8608 nn2m 8618 nnneo 8619 nneob 8620 omopthlem1 8623 omopthlem2 8624 pwen 9114 prfi 9274 en2eqpr 9960 en2eleq 9961 unctb 10157 infdjuabs 10158 ackbij1lem5 10176 sdom2en01 10255 fin56 10346 fin67 10348 fin1a2lem4 10356 alephexp1 10532 pwcfsdom 10536 alephom 10538 canthp1lem2 10606 pwxpndom2 10618 hash3 14371 hash2pr 14434 pr2pwpr 14444 rpnnen 16195 rexpen 16196 xpsfrnel 17525 xpscf 17528 symggen 19400 psgnunilem1 19423 simpgnsgd 20032 znfld 21470 hauspwdom 23388 xpsmet 24270 xpsxms 24422 xpsms 24423 unidifsnel 32464 unidifsnne 32465 sat1el2xp 35366 ex-sategoelelomsuc 35413 ex-sategoelel12 35414 1oequni2o 37356 finxpreclem4 37382 finxp3o 37388 wepwso 43032 frlmpwfi 43087 2omomeqom 43292 oenord1ex 43304 oaomoencom 43306 2finon 43439 har2o 43535 |
| Copyright terms: Public domain | W3C validator |