| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7729, see 2onnALT 8655. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7729. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8494 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8511 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7864 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 Oncon0 6352 Lim wlim 6353 ωcom 7861 2oc2o 8474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7862 df-1o 8480 df-2o 8481 |
| This theorem is referenced by: 3onn 8656 nn2m 8666 nnneo 8667 nneob 8668 omopthlem1 8671 omopthlem2 8672 pwen 9164 prfi 9335 en2eqpr 10021 en2eleq 10022 unctb 10218 infdjuabs 10219 ackbij1lem5 10237 sdom2en01 10316 fin56 10407 fin67 10409 fin1a2lem4 10417 alephexp1 10593 pwcfsdom 10597 alephom 10599 canthp1lem2 10667 pwxpndom2 10679 hash3 14424 hash2pr 14487 pr2pwpr 14497 rpnnen 16245 rexpen 16246 xpsfrnel 17576 xpscf 17579 symggen 19451 psgnunilem1 19474 simpgnsgd 20083 znfld 21521 hauspwdom 23439 xpsmet 24321 xpsxms 24473 xpsms 24474 unidifsnel 32516 unidifsnne 32517 sat1el2xp 35401 ex-sategoelelomsuc 35448 ex-sategoelel12 35449 1oequni2o 37386 finxpreclem4 37412 finxp3o 37418 wepwso 43067 frlmpwfi 43122 2omomeqom 43327 oenord1ex 43339 oaomoencom 43341 2finon 43474 har2o 43570 |
| Copyright terms: Public domain | W3C validator |