| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7668, see 2onnALT 8558. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7668. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8398 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8414 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7799 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 Oncon0 6306 Lim wlim 6307 ωcom 7796 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-om 7797 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: 3onn 8559 nn2m 8569 nnneo 8570 nneob 8571 omopthlem1 8574 omopthlem2 8575 pwen 9063 prfi 9208 en2eqpr 9898 en2eleq 9899 unctb 10095 infdjuabs 10096 ackbij1lem5 10114 sdom2en01 10193 fin56 10284 fin67 10286 fin1a2lem4 10294 alephexp1 10470 pwcfsdom 10474 alephom 10476 canthp1lem2 10544 pwxpndom2 10556 hash3 14313 hash2pr 14376 pr2pwpr 14386 rpnnen 16136 rexpen 16137 xpsfrnel 17466 xpscf 17469 symggen 19383 psgnunilem1 19406 simpgnsgd 20015 znfld 21498 hauspwdom 23417 xpsmet 24298 xpsxms 24450 xpsms 24451 unidifsnel 32513 unidifsnne 32514 sat1el2xp 35421 ex-sategoelelomsuc 35468 ex-sategoelel12 35469 1oequni2o 37408 finxpreclem4 37434 finxp3o 37440 wepwso 43082 frlmpwfi 43137 2omomeqom 43342 oenord1ex 43354 oaomoencom 43356 2finon 43489 har2o 43585 |
| Copyright terms: Public domain | W3C validator |