Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8268 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 8432 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 7711 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 suc csuc 6253 ωcom 7687 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 df-1o 8267 df-2o 8268 |
This theorem is referenced by: 3onn 8434 nn2m 8444 nnneo 8445 nneob 8446 omopthlem1 8449 omopthlem2 8450 pwen 8886 en3 8984 en2eqpr 9694 en2eleq 9695 unctb 9892 infdjuabs 9893 ackbij1lem5 9911 sdom2en01 9989 fin56 10080 fin67 10082 fin1a2lem4 10090 alephexp1 10266 pwcfsdom 10270 alephom 10272 canthp1lem2 10340 pwxpndom2 10352 hash3 14049 hash2pr 14111 pr2pwpr 14121 rpnnen 15864 rexpen 15865 xpsfrnel 17190 xpscf 17193 symggen 18993 psgnunilem1 19016 simpgnsgd 19618 znfld 20680 hauspwdom 22560 xpsmet 23443 xpsxms 23596 xpsms 23597 unidifsnel 30784 unidifsnne 30785 sat1el2xp 33241 ex-sategoelelomsuc 33288 ex-sategoelel12 33289 1oequni2o 35466 finxpreclem4 35492 finxp3o 35498 wepwso 40784 frlmpwfi 40839 |
Copyright terms: Public domain | W3C validator |