![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version |
Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7770, see 2onnALT 8699. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8536 | . 2 ⊢ 2o ∈ On | |
2 | 2ellim 8555 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
3 | 2 | ax-gen 1793 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
4 | elom 7906 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
5 | 1, 3, 4 | mpbir2an 710 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 Oncon0 6395 Lim wlim 6396 ωcom 7903 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 df-1o 8522 df-2o 8523 |
This theorem is referenced by: 3onn 8700 nn2m 8710 nnneo 8711 nneob 8712 omopthlem1 8715 omopthlem2 8716 pwen 9216 prfi 9391 en2eqpr 10076 en2eleq 10077 unctb 10273 infdjuabs 10274 ackbij1lem5 10292 sdom2en01 10371 fin56 10462 fin67 10464 fin1a2lem4 10472 alephexp1 10648 pwcfsdom 10652 alephom 10654 canthp1lem2 10722 pwxpndom2 10734 hash3 14455 hash2pr 14518 pr2pwpr 14528 rpnnen 16275 rexpen 16276 xpsfrnel 17622 xpscf 17625 symggen 19512 psgnunilem1 19535 simpgnsgd 20144 znfld 21602 hauspwdom 23530 xpsmet 24413 xpsxms 24568 xpsms 24569 unidifsnel 32563 unidifsnne 32564 sat1el2xp 35347 ex-sategoelelomsuc 35394 ex-sategoelel12 35395 1oequni2o 37334 finxpreclem4 37360 finxp3o 37366 wepwso 43000 frlmpwfi 43055 2omomeqom 43265 oenord1ex 43277 oaomoencom 43279 2finon 43412 har2o 43508 |
Copyright terms: Public domain | W3C validator |