Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8118 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 8280 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 7606 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2848 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 suc csuc 6175 ωcom 7584 1oc1o 8110 2oc2o 8111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-tr 5142 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-om 7585 df-1o 8117 df-2o 8118 |
This theorem is referenced by: 3onn 8282 nn2m 8292 nnneo 8293 nneob 8294 omopthlem1 8297 omopthlem2 8298 pwen 8717 en3 8796 en2eqpr 9472 en2eleq 9473 unctb 9670 infdjuabs 9671 ackbij1lem5 9689 sdom2en01 9767 fin56 9858 fin67 9860 fin1a2lem4 9868 alephexp1 10044 pwcfsdom 10048 alephom 10050 canthp1lem2 10118 pwxpndom2 10130 hash3 13822 hash2pr 13884 pr2pwpr 13894 rpnnen 15633 rexpen 15634 xpsfrnel 16898 xpscf 16901 symggen 18670 psgnunilem1 18693 simpgnsgd 19295 znfld 20333 hauspwdom 22206 xpsmet 23089 xpsxms 23241 xpsms 23242 unidifsnel 30410 unidifsnne 30411 sat1el2xp 32861 ex-sategoelelomsuc 32908 ex-sategoelel12 32909 1oequni2o 35091 finxpreclem4 35117 finxp3o 35123 wepwso 40388 frlmpwfi 40443 |
Copyright terms: Public domain | W3C validator |