| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7675, see 2onnALT 8568. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7675. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8408 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8424 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7809 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6311 Lim wlim 6312 ωcom 7806 2oc2o 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 df-1o 8395 df-2o 8396 |
| This theorem is referenced by: 3onn 8569 nn2m 8579 nnneo 8580 nneob 8581 omopthlem1 8584 omopthlem2 8585 pwen 9074 prfi 9232 en2eqpr 9920 en2eleq 9921 unctb 10117 infdjuabs 10118 ackbij1lem5 10136 sdom2en01 10215 fin56 10306 fin67 10308 fin1a2lem4 10316 alephexp1 10492 pwcfsdom 10496 alephom 10498 canthp1lem2 10566 pwxpndom2 10578 hash3 14331 hash2pr 14394 pr2pwpr 14404 rpnnen 16154 rexpen 16155 xpsfrnel 17484 xpscf 17487 symggen 19367 psgnunilem1 19390 simpgnsgd 19999 znfld 21485 hauspwdom 23404 xpsmet 24286 xpsxms 24438 xpsms 24439 unidifsnel 32497 unidifsnne 32498 sat1el2xp 35354 ex-sategoelelomsuc 35401 ex-sategoelel12 35402 1oequni2o 37344 finxpreclem4 37370 finxp3o 37376 wepwso 43019 frlmpwfi 43074 2omomeqom 43279 oenord1ex 43291 oaomoencom 43293 2finon 43426 har2o 43522 |
| Copyright terms: Public domain | W3C validator |