| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7755, see 2onnALT 8681. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7755. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8520 | . 2 ⊢ 2o ∈ On | |
| 2 | 2ellim 8537 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
| 4 | elom 7890 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 2o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 Oncon0 6384 Lim wlim 6385 ωcom 7887 2oc2o 8500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-om 7888 df-1o 8506 df-2o 8507 |
| This theorem is referenced by: 3onn 8682 nn2m 8692 nnneo 8693 nneob 8694 omopthlem1 8697 omopthlem2 8698 pwen 9190 prfi 9363 en2eqpr 10047 en2eleq 10048 unctb 10244 infdjuabs 10245 ackbij1lem5 10263 sdom2en01 10342 fin56 10433 fin67 10435 fin1a2lem4 10443 alephexp1 10619 pwcfsdom 10623 alephom 10625 canthp1lem2 10693 pwxpndom2 10705 hash3 14445 hash2pr 14508 pr2pwpr 14518 rpnnen 16263 rexpen 16264 xpsfrnel 17607 xpscf 17610 symggen 19488 psgnunilem1 19511 simpgnsgd 20120 znfld 21579 hauspwdom 23509 xpsmet 24392 xpsxms 24547 xpsms 24548 unidifsnel 32553 unidifsnne 32554 sat1el2xp 35384 ex-sategoelelomsuc 35431 ex-sategoelel12 35432 1oequni2o 37369 finxpreclem4 37395 finxp3o 37401 wepwso 43055 frlmpwfi 43110 2omomeqom 43316 oenord1ex 43328 oaomoencom 43330 2finon 43463 har2o 43559 |
| Copyright terms: Public domain | W3C validator |