Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version |
Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7588, see 2onnALT 8473. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7588. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8311 | . 2 ⊢ 2o ∈ On | |
2 | 2ellim 8329 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
3 | 2 | ax-gen 1798 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
4 | elom 7715 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
5 | 1, 3, 4 | mpbir2an 708 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2106 Oncon0 6266 Lim wlim 6267 ωcom 7712 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 df-1o 8297 df-2o 8298 |
This theorem is referenced by: 3onn 8474 nn2m 8484 nnneo 8485 nneob 8486 omopthlem1 8489 omopthlem2 8490 pwen 8937 en3 9054 en2eqpr 9763 en2eleq 9764 unctb 9961 infdjuabs 9962 ackbij1lem5 9980 sdom2en01 10058 fin56 10149 fin67 10151 fin1a2lem4 10159 alephexp1 10335 pwcfsdom 10339 alephom 10341 canthp1lem2 10409 pwxpndom2 10421 hash3 14121 hash2pr 14183 pr2pwpr 14193 rpnnen 15936 rexpen 15937 xpsfrnel 17273 xpscf 17276 symggen 19078 psgnunilem1 19101 simpgnsgd 19703 znfld 20768 hauspwdom 22652 xpsmet 23535 xpsxms 23690 xpsms 23691 unidifsnel 30883 unidifsnne 30884 sat1el2xp 33341 ex-sategoelelomsuc 33388 ex-sategoelel12 33389 1oequni2o 35539 finxpreclem4 35565 finxp3o 35571 wepwso 40868 frlmpwfi 40923 2finon 41057 har2o 41153 |
Copyright terms: Public domain | W3C validator |