Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
limom | ⊢ Lim ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7722 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7632 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | ordirr 6284 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
5 | elom 7715 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
6 | 5 | baib 536 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
7 | 4, 6 | mtbii 326 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
8 | limomss 7717 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
9 | limord 6325 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
10 | ordsseleq 6295 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
11 | 1, 9, 10 | sylancr 587 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
12 | 8, 11 | mpbid 231 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
13 | 12 | ord 861 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
14 | limeq 6278 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
15 | 14 | biimprcd 249 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
19 | 18 | alrimiv 1930 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
21 | limon 7683 | . . . . 5 ⊢ Lim On | |
22 | limeq 6278 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
23 | 21, 22 | mpbiri 257 | . . . 4 ⊢ (ω = On → Lim ω) |
24 | 20, 23 | jaoi 854 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
25 | 2, 24 | sylbi 216 | . 2 ⊢ (Ord ω → Lim ω) |
26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 Ord word 6265 Oncon0 6266 Lim wlim 6267 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 |
This theorem is referenced by: peano2b 7729 ssnlim 7732 peano1OLD 7736 onesuc 8360 oaabslem 8477 oaabs2 8479 omabslem 8480 infensuc 8942 infeq5i 9394 elom3 9406 omenps 9413 omensuc 9414 infdifsn 9415 cardlim 9730 r1om 10000 cfom 10020 ominf4 10068 alephom 10341 wunex3 10497 satom 33318 fmla 33343 exrecfnlem 35550 dfom6 41138 |
Copyright terms: Public domain | W3C validator |