MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limom Structured version   Visualization version   GIF version

Theorem limom 7838
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
StepHypRef Expression
1 ordom 7832 . 2 Ord ω
2 ordeleqon 7738 . . 3 (Ord ω ↔ (ω ∈ On ∨ ω = On))
3 ordirr 6338 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
41, 3ax-mp 5 . . . . . 6 ¬ ω ∈ ω
5 elom 7825 . . . . . . 7 (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
65baib 535 . . . . . 6 (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
74, 6mtbii 326 . . . . 5 (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
8 limomss 7827 . . . . . . . . . . 11 (Lim 𝑥 → ω ⊆ 𝑥)
9 limord 6381 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
10 ordsseleq 6349 . . . . . . . . . . . 12 ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
111, 9, 10sylancr 587 . . . . . . . . . . 11 (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
128, 11mpbid 232 . . . . . . . . . 10 (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥))
1312ord 864 . . . . . . . . 9 (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥))
14 limeq 6332 . . . . . . . . . 10 (ω = 𝑥 → (Lim ω ↔ Lim 𝑥))
1514biimprcd 250 . . . . . . . . 9 (Lim 𝑥 → (ω = 𝑥 → Lim ω))
1613, 15syld 47 . . . . . . . 8 (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω))
1716con1d 145 . . . . . . 7 (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥))
1817com12 32 . . . . . 6 (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥))
1918alrimiv 1927 . . . . 5 (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
207, 19nsyl2 141 . . . 4 (ω ∈ On → Lim ω)
21 limon 7791 . . . . 5 Lim On
22 limeq 6332 . . . . 5 (ω = On → (Lim ω ↔ Lim On))
2321, 22mpbiri 258 . . . 4 (ω = On → Lim ω)
2420, 23jaoi 857 . . 3 ((ω ∈ On ∨ ω = On) → Lim ω)
252, 24sylbi 217 . 2 (Ord ω → Lim ω)
261, 25ax-mp 5 1 Lim ω
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847  wal 1538   = wceq 1540  wcel 2109  wss 3911  Ord word 6319  Oncon0 6320  Lim wlim 6321  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823
This theorem is referenced by:  peano2b  7839  ssnlim  7842  onesuc  8471  oaabslem  8588  oaabs2  8590  omabslem  8591  infensuc  9096  infeq5i  9565  elom3  9577  omenps  9584  omensuc  9585  infdifsn  9586  cardlim  9901  r1om  10172  cfom  10193  ominf4  10241  alephom  10514  wunex3  10670  satom  35336  fmla  35361  exrecfnlem  37360  onexlimgt  43225  oaabsb  43276  nnoeomeqom  43294  succlg  43310  dflim5  43311  dfom6  43513
  Copyright terms: Public domain W3C validator