Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
limom | ⊢ Lim ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7697 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7609 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | ordirr 6269 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
5 | elom 7690 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
6 | 5 | baib 535 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
7 | 4, 6 | mtbii 325 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
8 | limomss 7692 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
9 | limord 6310 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
10 | ordsseleq 6280 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
11 | 1, 9, 10 | sylancr 586 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
12 | 8, 11 | mpbid 231 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
13 | 12 | ord 860 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
14 | limeq 6263 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
15 | 14 | biimprcd 249 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
19 | 18 | alrimiv 1931 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
21 | limon 7658 | . . . . 5 ⊢ Lim On | |
22 | limeq 6263 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
23 | 21, 22 | mpbiri 257 | . . . 4 ⊢ (ω = On → Lim ω) |
24 | 20, 23 | jaoi 853 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
25 | 2, 24 | sylbi 216 | . 2 ⊢ (Ord ω → Lim ω) |
26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 Ord word 6250 Oncon0 6251 Lim wlim 6252 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: peano2b 7704 ssnlim 7707 peano1 7710 onesuc 8322 oaabslem 8437 oaabs2 8439 omabslem 8440 infensuc 8891 infeq5i 9324 elom3 9336 omenps 9343 omensuc 9344 infdifsn 9345 cardlim 9661 r1om 9931 cfom 9951 ominf4 9999 alephom 10272 wunex3 10428 satom 33218 fmla 33243 exrecfnlem 35477 dfom6 41036 |
Copyright terms: Public domain | W3C validator |