| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7855 | . 2 ⊢ Ord ω | |
| 2 | ordeleqon 7761 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
| 3 | ordirr 6353 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
| 5 | elom 7848 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
| 6 | 5 | baib 535 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
| 7 | 4, 6 | mtbii 326 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 8 | limomss 7850 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
| 9 | limord 6396 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
| 10 | ordsseleq 6364 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
| 11 | 1, 9, 10 | sylancr 587 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
| 12 | 8, 11 | mpbid 232 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
| 13 | 12 | ord 864 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
| 14 | limeq 6347 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
| 15 | 14 | biimprcd 250 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
| 16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
| 17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
| 18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
| 19 | 18 | alrimiv 1927 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
| 21 | limon 7814 | . . . . 5 ⊢ Lim On | |
| 22 | limeq 6347 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
| 23 | 21, 22 | mpbiri 258 | . . . 4 ⊢ (ω = On → Lim ω) |
| 24 | 20, 23 | jaoi 857 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
| 25 | 2, 24 | sylbi 217 | . 2 ⊢ (Ord ω → Lim ω) |
| 26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 Oncon0 6335 Lim wlim 6336 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 |
| This theorem is referenced by: peano2b 7862 ssnlim 7865 onesuc 8497 oaabslem 8614 oaabs2 8616 omabslem 8617 infensuc 9125 infeq5i 9596 elom3 9608 omenps 9615 omensuc 9616 infdifsn 9617 cardlim 9932 r1om 10203 cfom 10224 ominf4 10272 alephom 10545 wunex3 10701 satom 35350 fmla 35375 exrecfnlem 37374 onexlimgt 43239 oaabsb 43290 nnoeomeqom 43308 succlg 43324 dflim5 43325 dfom6 43527 |
| Copyright terms: Public domain | W3C validator |