MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limom Structured version   Visualization version   GIF version

Theorem limom 7871
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
StepHypRef Expression
1 ordom 7865 . 2 Ord ω
2 ordeleqon 7769 . . 3 (Ord ω ↔ (ω ∈ On ∨ ω = On))
3 ordirr 6383 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
41, 3ax-mp 5 . . . . . 6 ¬ ω ∈ ω
5 elom 7858 . . . . . . 7 (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
65baib 537 . . . . . 6 (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
74, 6mtbii 326 . . . . 5 (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
8 limomss 7860 . . . . . . . . . . 11 (Lim 𝑥 → ω ⊆ 𝑥)
9 limord 6425 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
10 ordsseleq 6394 . . . . . . . . . . . 12 ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
111, 9, 10sylancr 588 . . . . . . . . . . 11 (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
128, 11mpbid 231 . . . . . . . . . 10 (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥))
1312ord 863 . . . . . . . . 9 (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥))
14 limeq 6377 . . . . . . . . . 10 (ω = 𝑥 → (Lim ω ↔ Lim 𝑥))
1514biimprcd 249 . . . . . . . . 9 (Lim 𝑥 → (ω = 𝑥 → Lim ω))
1613, 15syld 47 . . . . . . . 8 (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω))
1716con1d 145 . . . . . . 7 (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥))
1817com12 32 . . . . . 6 (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥))
1918alrimiv 1931 . . . . 5 (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
207, 19nsyl2 141 . . . 4 (ω ∈ On → Lim ω)
21 limon 7824 . . . . 5 Lim On
22 limeq 6377 . . . . 5 (ω = On → (Lim ω ↔ Lim On))
2321, 22mpbiri 258 . . . 4 (ω = On → Lim ω)
2420, 23jaoi 856 . . 3 ((ω ∈ On ∨ ω = On) → Lim ω)
252, 24sylbi 216 . 2 (Ord ω → Lim ω)
261, 25ax-mp 5 1 Lim ω
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 846  wal 1540   = wceq 1542  wcel 2107  wss 3949  Ord word 6364  Oncon0 6365  Lim wlim 6366  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-om 7856
This theorem is referenced by:  peano2b  7872  ssnlim  7875  peano1OLD  7880  onesuc  8530  oaabslem  8646  oaabs2  8648  omabslem  8649  infensuc  9155  infeq5i  9631  elom3  9643  omenps  9650  omensuc  9651  infdifsn  9652  cardlim  9967  r1om  10239  cfom  10259  ominf4  10307  alephom  10580  wunex3  10736  satom  34347  fmla  34372  exrecfnlem  36260  onexlimgt  41992  oaabsb  42044  nnoeomeqom  42062  succlg  42078  dflim5  42079  dfom6  42282
  Copyright terms: Public domain W3C validator