| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7809 | . 2 ⊢ Ord ω | |
| 2 | ordeleqon 7718 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
| 3 | ordirr 6325 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
| 5 | elom 7802 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
| 6 | 5 | baib 535 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
| 7 | 4, 6 | mtbii 326 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 8 | limomss 7804 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
| 9 | limord 6368 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
| 10 | ordsseleq 6336 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
| 11 | 1, 9, 10 | sylancr 587 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
| 12 | 8, 11 | mpbid 232 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
| 13 | 12 | ord 864 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
| 14 | limeq 6319 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
| 15 | 14 | biimprcd 250 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
| 16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
| 17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
| 18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
| 19 | 18 | alrimiv 1927 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
| 21 | limon 7769 | . . . . 5 ⊢ Lim On | |
| 22 | limeq 6319 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
| 23 | 21, 22 | mpbiri 258 | . . . 4 ⊢ (ω = On → Lim ω) |
| 24 | 20, 23 | jaoi 857 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
| 25 | 2, 24 | sylbi 217 | . 2 ⊢ (Ord ω → Lim ω) |
| 26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 Ord word 6306 Oncon0 6307 Lim wlim 6308 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 |
| This theorem is referenced by: peano2b 7816 ssnlim 7819 onesuc 8448 oaabslem 8565 oaabs2 8567 omabslem 8568 infensuc 9072 infeq5i 9532 elom3 9544 omenps 9551 omensuc 9552 infdifsn 9553 cardlim 9868 r1om 10137 cfom 10158 ominf4 10206 alephom 10479 wunex3 10635 satom 35333 fmla 35358 exrecfnlem 37357 onexlimgt 43220 oaabsb 43271 nnoeomeqom 43289 succlg 43305 dflim5 43306 dfom6 43508 |
| Copyright terms: Public domain | W3C validator |