![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
limom | ⊢ Lim ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7897 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7801 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | ordirr 6404 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
5 | elom 7890 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
6 | 5 | baib 535 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
7 | 4, 6 | mtbii 326 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
8 | limomss 7892 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
9 | limord 6446 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
10 | ordsseleq 6415 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
11 | 1, 9, 10 | sylancr 587 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
12 | 8, 11 | mpbid 232 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
13 | 12 | ord 864 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
14 | limeq 6398 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
15 | 14 | biimprcd 250 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
19 | 18 | alrimiv 1925 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
21 | limon 7856 | . . . . 5 ⊢ Lim On | |
22 | limeq 6398 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
23 | 21, 22 | mpbiri 258 | . . . 4 ⊢ (ω = On → Lim ω) |
24 | 20, 23 | jaoi 857 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
25 | 2, 24 | sylbi 217 | . 2 ⊢ (Ord ω → Lim ω) |
26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 Oncon0 6386 Lim wlim 6387 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 |
This theorem is referenced by: peano2b 7904 ssnlim 7907 peano1OLD 7912 onesuc 8567 oaabslem 8684 oaabs2 8686 omabslem 8687 infensuc 9194 infeq5i 9674 elom3 9686 omenps 9693 omensuc 9694 infdifsn 9695 cardlim 10010 r1om 10281 cfom 10302 ominf4 10350 alephom 10623 wunex3 10779 satom 35341 fmla 35366 exrecfnlem 37362 onexlimgt 43232 oaabsb 43284 nnoeomeqom 43302 succlg 43318 dflim5 43319 dfom6 43521 |
Copyright terms: Public domain | W3C validator |