MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limom Structured version   Visualization version   GIF version

Theorem limom 7728
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
StepHypRef Expression
1 ordom 7722 . 2 Ord ω
2 ordeleqon 7632 . . 3 (Ord ω ↔ (ω ∈ On ∨ ω = On))
3 ordirr 6284 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
41, 3ax-mp 5 . . . . . 6 ¬ ω ∈ ω
5 elom 7715 . . . . . . 7 (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
65baib 536 . . . . . 6 (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
74, 6mtbii 326 . . . . 5 (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
8 limomss 7717 . . . . . . . . . . 11 (Lim 𝑥 → ω ⊆ 𝑥)
9 limord 6325 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
10 ordsseleq 6295 . . . . . . . . . . . 12 ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
111, 9, 10sylancr 587 . . . . . . . . . . 11 (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
128, 11mpbid 231 . . . . . . . . . 10 (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥))
1312ord 861 . . . . . . . . 9 (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥))
14 limeq 6278 . . . . . . . . . 10 (ω = 𝑥 → (Lim ω ↔ Lim 𝑥))
1514biimprcd 249 . . . . . . . . 9 (Lim 𝑥 → (ω = 𝑥 → Lim ω))
1613, 15syld 47 . . . . . . . 8 (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω))
1716con1d 145 . . . . . . 7 (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥))
1817com12 32 . . . . . 6 (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥))
1918alrimiv 1930 . . . . 5 (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
207, 19nsyl2 141 . . . 4 (ω ∈ On → Lim ω)
21 limon 7683 . . . . 5 Lim On
22 limeq 6278 . . . . 5 (ω = On → (Lim ω ↔ Lim On))
2321, 22mpbiri 257 . . . 4 (ω = On → Lim ω)
2420, 23jaoi 854 . . 3 ((ω ∈ On ∨ ω = On) → Lim ω)
252, 24sylbi 216 . 2 (Ord ω → Lim ω)
261, 25ax-mp 5 1 Lim ω
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844  wal 1537   = wceq 1539  wcel 2106  wss 3887  Ord word 6265  Oncon0 6266  Lim wlim 6267  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-om 7713
This theorem is referenced by:  peano2b  7729  ssnlim  7732  peano1OLD  7736  onesuc  8360  oaabslem  8477  oaabs2  8479  omabslem  8480  infensuc  8942  infeq5i  9394  elom3  9406  omenps  9413  omensuc  9414  infdifsn  9415  cardlim  9730  r1om  10000  cfom  10020  ominf4  10068  alephom  10341  wunex3  10497  satom  33318  fmla  33343  exrecfnlem  35550  dfom6  41138
  Copyright terms: Public domain W3C validator