| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7832 | . 2 ⊢ Ord ω | |
| 2 | ordeleqon 7738 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
| 3 | ordirr 6338 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
| 5 | elom 7825 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
| 6 | 5 | baib 535 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
| 7 | 4, 6 | mtbii 326 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 8 | limomss 7827 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
| 9 | limord 6381 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
| 10 | ordsseleq 6349 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
| 11 | 1, 9, 10 | sylancr 587 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
| 12 | 8, 11 | mpbid 232 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
| 13 | 12 | ord 864 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
| 14 | limeq 6332 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
| 15 | 14 | biimprcd 250 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
| 16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
| 17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
| 18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
| 19 | 18 | alrimiv 1927 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
| 21 | limon 7791 | . . . . 5 ⊢ Lim On | |
| 22 | limeq 6332 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
| 23 | 21, 22 | mpbiri 258 | . . . 4 ⊢ (ω = On → Lim ω) |
| 24 | 20, 23 | jaoi 857 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
| 25 | 2, 24 | sylbi 217 | . 2 ⊢ (Ord ω → Lim ω) |
| 26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 Ord word 6319 Oncon0 6320 Lim wlim 6321 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-om 7823 |
| This theorem is referenced by: peano2b 7839 ssnlim 7842 onesuc 8471 oaabslem 8588 oaabs2 8590 omabslem 8591 infensuc 9096 infeq5i 9565 elom3 9577 omenps 9584 omensuc 9585 infdifsn 9586 cardlim 9901 r1om 10172 cfom 10193 ominf4 10241 alephom 10514 wunex3 10670 satom 35336 fmla 35361 exrecfnlem 37360 onexlimgt 43225 oaabsb 43276 nnoeomeqom 43294 succlg 43310 dflim5 43311 dfom6 43513 |
| Copyright terms: Public domain | W3C validator |