| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limom | Structured version Visualization version GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7852 | . 2 ⊢ Ord ω | |
| 2 | ordeleqon 7758 | . . 3 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
| 3 | ordirr 6350 | . . . . . . 7 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 4 | 1, 3 | ax-mp 5 | . . . . . 6 ⊢ ¬ ω ∈ ω |
| 5 | elom 7845 | . . . . . . 7 ⊢ (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) | |
| 6 | 5 | baib 535 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))) |
| 7 | 4, 6 | mtbii 326 | . . . . 5 ⊢ (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 8 | limomss 7847 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → ω ⊆ 𝑥) | |
| 9 | limord 6393 | . . . . . . . . . . . 12 ⊢ (Lim 𝑥 → Ord 𝑥) | |
| 10 | ordsseleq 6361 | . . . . . . . . . . . 12 ⊢ ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) | |
| 11 | 1, 9, 10 | sylancr 587 | . . . . . . . . . . 11 ⊢ (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥))) |
| 12 | 8, 11 | mpbid 232 | . . . . . . . . . 10 ⊢ (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥)) |
| 13 | 12 | ord 864 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥)) |
| 14 | limeq 6344 | . . . . . . . . . 10 ⊢ (ω = 𝑥 → (Lim ω ↔ Lim 𝑥)) | |
| 15 | 14 | biimprcd 250 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (ω = 𝑥 → Lim ω)) |
| 16 | 13, 15 | syld 47 | . . . . . . . 8 ⊢ (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω)) |
| 17 | 16 | con1d 145 | . . . . . . 7 ⊢ (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥)) |
| 18 | 17 | com12 32 | . . . . . 6 ⊢ (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥)) |
| 19 | 18 | alrimiv 1927 | . . . . 5 ⊢ (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)) |
| 20 | 7, 19 | nsyl2 141 | . . . 4 ⊢ (ω ∈ On → Lim ω) |
| 21 | limon 7811 | . . . . 5 ⊢ Lim On | |
| 22 | limeq 6344 | . . . . 5 ⊢ (ω = On → (Lim ω ↔ Lim On)) | |
| 23 | 21, 22 | mpbiri 258 | . . . 4 ⊢ (ω = On → Lim ω) |
| 24 | 20, 23 | jaoi 857 | . . 3 ⊢ ((ω ∈ On ∨ ω = On) → Lim ω) |
| 25 | 2, 24 | sylbi 217 | . 2 ⊢ (Ord ω → Lim ω) |
| 26 | 1, 25 | ax-mp 5 | 1 ⊢ Lim ω |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 Lim wlim 6333 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 |
| This theorem is referenced by: peano2b 7859 ssnlim 7862 onesuc 8494 oaabslem 8611 oaabs2 8613 omabslem 8614 infensuc 9119 infeq5i 9589 elom3 9601 omenps 9608 omensuc 9609 infdifsn 9610 cardlim 9925 r1om 10196 cfom 10217 ominf4 10265 alephom 10538 wunex3 10694 satom 35343 fmla 35368 exrecfnlem 37367 onexlimgt 43232 oaabsb 43283 nnoeomeqom 43301 succlg 43317 dflim5 43318 dfom6 43520 |
| Copyright terms: Public domain | W3C validator |