| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elom3 | Structured version Visualization version GIF version | ||
| Description: A simplification of elom 7845 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
| Ref | Expression |
|---|---|
| elom3 | ⊢ (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom 7845 | . 2 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
| 2 | limom 7858 | . . . . 5 ⊢ Lim ω | |
| 3 | omex 9596 | . . . . . 6 ⊢ ω ∈ V | |
| 4 | limeq 6344 | . . . . . . 7 ⊢ (𝑥 = ω → (Lim 𝑥 ↔ Lim ω)) | |
| 5 | eleq2 2817 | . . . . . . 7 ⊢ (𝑥 = ω → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ω)) | |
| 6 | 4, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = ω → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim ω → 𝐴 ∈ ω))) |
| 7 | 3, 6 | spcv 3571 | . . . . 5 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim ω → 𝐴 ∈ ω)) |
| 8 | 2, 7 | mpi 20 | . . . 4 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → 𝐴 ∈ ω) |
| 9 | nnon 7848 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → 𝐴 ∈ On) |
| 11 | 10 | pm4.71ri 560 | . 2 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| 12 | 1, 11 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Oncon0 6332 Lim wlim 6333 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 |
| This theorem is referenced by: dfom4 9602 dfom5 9603 |
| Copyright terms: Public domain | W3C validator |