| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elom3 | Structured version Visualization version GIF version | ||
| Description: A simplification of elom 7799 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
| Ref | Expression |
|---|---|
| elom3 | ⊢ (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom 7799 | . 2 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
| 2 | limom 7812 | . . . . 5 ⊢ Lim ω | |
| 3 | omex 9533 | . . . . . 6 ⊢ ω ∈ V | |
| 4 | limeq 6318 | . . . . . . 7 ⊢ (𝑥 = ω → (Lim 𝑥 ↔ Lim ω)) | |
| 5 | eleq2 2820 | . . . . . . 7 ⊢ (𝑥 = ω → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ω)) | |
| 6 | 4, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = ω → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim ω → 𝐴 ∈ ω))) |
| 7 | 3, 6 | spcv 3555 | . . . . 5 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim ω → 𝐴 ∈ ω)) |
| 8 | 2, 7 | mpi 20 | . . . 4 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → 𝐴 ∈ ω) |
| 9 | nnon 7802 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → 𝐴 ∈ On) |
| 11 | 10 | pm4.71ri 560 | . 2 ⊢ (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| 12 | 1, 11 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Oncon0 6306 Lim wlim 6307 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-om 7797 |
| This theorem is referenced by: dfom4 9539 dfom5 9540 |
| Copyright terms: Public domain | W3C validator |