MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elom3 Structured version   Visualization version   GIF version

Theorem elom3 9577
Description: A simplification of elom 7825 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.)
Assertion
Ref Expression
elom3 (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥𝐴𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elom3
StepHypRef Expression
1 elom 7825 . 2 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
2 limom 7838 . . . . 5 Lim ω
3 omex 9572 . . . . . 6 ω ∈ V
4 limeq 6332 . . . . . . 7 (𝑥 = ω → (Lim 𝑥 ↔ Lim ω))
5 eleq2 2817 . . . . . . 7 (𝑥 = ω → (𝐴𝑥𝐴 ∈ ω))
64, 5imbi12d 344 . . . . . 6 (𝑥 = ω → ((Lim 𝑥𝐴𝑥) ↔ (Lim ω → 𝐴 ∈ ω)))
73, 6spcv 3568 . . . . 5 (∀𝑥(Lim 𝑥𝐴𝑥) → (Lim ω → 𝐴 ∈ ω))
82, 7mpi 20 . . . 4 (∀𝑥(Lim 𝑥𝐴𝑥) → 𝐴 ∈ ω)
9 nnon 7828 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
108, 9syl 17 . . 3 (∀𝑥(Lim 𝑥𝐴𝑥) → 𝐴 ∈ On)
1110pm4.71ri 560 . 2 (∀𝑥(Lim 𝑥𝐴𝑥) ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
121, 11bitr4i 278 1 (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Oncon0 6320  Lim wlim 6321  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823
This theorem is referenced by:  dfom4  9578  dfom5  9579
  Copyright terms: Public domain W3C validator