Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8281 | . 2 ⊢ 1o = suc ∅ | |
2 | peano1 7723 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 7724 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ∅c0 4261 suc csuc 6265 ωcom 7700 1oc1o 8274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-om 7701 df-1o 8281 |
This theorem is referenced by: 2onn 8447 1one2o 8450 oaabs2 8453 omabs 8455 nnm2 8457 nnneo 8459 nneob 8460 snfi 8804 snnen2o 8963 1sdom2 8983 1sdom 8987 unxpdom2 8992 en1eqsn 9009 en2 9014 pwfiOLD 9075 wofib 9265 oancom 9370 cnfcom3clem 9424 ssttrcl 9434 ttrcltr 9435 djurf1o 9655 card1 9710 pm54.43lem 9742 en2eleq 9748 en2other2 9749 infxpenlem 9753 infxpenc2lem1 9759 sdom2en01 10042 cfpwsdom 10324 canthp1lem2 10393 gchdju1 10396 pwxpndom2 10405 pwdjundom 10407 1pi 10623 1lt2pi 10645 indpi 10647 hash2 14101 hash1snb 14115 fnpr2o 17249 fvpr1o 17252 f1otrspeq 19036 pmtrf 19044 pmtrmvd 19045 pmtrfinv 19050 lt6abl 19477 isnzr2 20515 frgpcyg 20762 vr1cl 21369 ply1coe 21448 isppw 26244 bnj906 32889 sat1el2xp 33320 satfv1fvfmla1 33364 satefvfmla1 33366 ex-sategoelelomsuc 33367 ex-sategoelel12 33368 finxpreclem1 35539 finxpreclem2 35540 finxp1o 35542 finxpreclem4 35544 finxp2o 35549 domalom 35554 |
Copyright terms: Public domain | W3C validator |