| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7671, see 1onnALT 8559. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7671. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8400 | . 2 ⊢ 1o ∈ On | |
| 2 | 1ellim 8416 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
| 4 | elom 7802 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6307 Lim wlim 6308 ωcom 7799 1oc1o 8381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 df-1o 8388 |
| This theorem is referenced by: 2onnALT 8561 1one2o 8564 oaabs2 8567 omabs 8569 nnm2 8571 nnneo 8573 nneob 8574 snfi 8968 snfiOLD 8969 1sdom2ALT 9138 unxpdom2 9149 wofib 9437 oancom 9547 cnfcom3clem 9601 ssttrcl 9611 ttrcltr 9612 djurf1o 9809 card1 9864 pm54.43lem 9896 en2eleq 9902 en2other2 9903 infxpenlem 9907 infxpenc2lem1 9913 sdom2en01 10196 cfpwsdom 10478 canthp1lem2 10547 gchdju1 10550 pwxpndom2 10559 pwdjundom 10561 1pi 10777 1lt2pi 10799 indpi 10801 hash2 14312 hash1snb 14326 fnpr2o 17461 fvpr1o 17464 f1otrspeq 19326 pmtrf 19334 pmtrmvd 19335 pmtrfinv 19340 lt6abl 19774 isnzr2 20403 frgpcyg 21480 vr1cl 22100 ply1coe 22183 isppw 27022 bnj906 34897 sat1el2xp 35352 satfv1fvfmla1 35396 satefvfmla1 35398 ex-sategoelelomsuc 35399 ex-sategoelel12 35400 finxpreclem1 37363 finxpreclem2 37364 finxp1o 37366 finxpreclem4 37368 finxp2o 37373 domalom 37378 onexoegt 43217 1oaomeqom 43266 oaabsb 43267 omnord1ex 43277 oaomoencom 43290 cantnftermord 43293 cantnf2 43298 omabs2 43305 omcl2 43306 1finon 43422 finona1cl 43426 1iscard 43515 |
| Copyright terms: Public domain | W3C validator |