| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7711, see 1onnALT 8605. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7711. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8446 | . 2 ⊢ 1o ∈ On | |
| 2 | 1ellim 8462 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
| 4 | elom 7845 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6332 Lim wlim 6333 ωcom 7842 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 df-1o 8434 |
| This theorem is referenced by: 2onnALT 8607 1one2o 8610 oaabs2 8613 omabs 8615 nnm2 8617 nnneo 8619 nneob 8620 snfi 9014 snfiOLD 9015 1sdom2ALT 9188 1sdomOLD 9196 unxpdom2 9201 en1eqsnOLD 9220 wofib 9498 oancom 9604 cnfcom3clem 9658 ssttrcl 9668 ttrcltr 9669 djurf1o 9866 card1 9921 pm54.43lem 9953 en2eleq 9961 en2other2 9962 infxpenlem 9966 infxpenc2lem1 9972 sdom2en01 10255 cfpwsdom 10537 canthp1lem2 10606 gchdju1 10609 pwxpndom2 10618 pwdjundom 10620 1pi 10836 1lt2pi 10858 indpi 10860 hash2 14370 hash1snb 14384 fnpr2o 17520 fvpr1o 17523 f1otrspeq 19377 pmtrf 19385 pmtrmvd 19386 pmtrfinv 19391 lt6abl 19825 isnzr2 20427 frgpcyg 21483 vr1cl 22102 ply1coe 22185 isppw 27024 bnj906 34920 sat1el2xp 35366 satfv1fvfmla1 35410 satefvfmla1 35412 ex-sategoelelomsuc 35413 ex-sategoelel12 35414 finxpreclem1 37377 finxpreclem2 37378 finxp1o 37380 finxpreclem4 37382 finxp2o 37387 domalom 37392 onexoegt 43233 1oaomeqom 43282 oaabsb 43283 omnord1ex 43293 oaomoencom 43306 cantnftermord 43309 cantnf2 43314 omabs2 43321 omcl2 43322 1finon 43438 finona1cl 43442 1iscard 43531 |
| Copyright terms: Public domain | W3C validator |