| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7714, see 1onnALT 8608. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7714. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8449 | . 2 ⊢ 1o ∈ On | |
| 2 | 1ellim 8465 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
| 4 | elom 7848 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6335 Lim wlim 6336 ωcom 7845 1oc1o 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-1o 8437 |
| This theorem is referenced by: 2onnALT 8610 1one2o 8613 oaabs2 8616 omabs 8618 nnm2 8620 nnneo 8622 nneob 8623 snfi 9017 snfiOLD 9018 1sdom2ALT 9195 1sdomOLD 9203 unxpdom2 9208 en1eqsnOLD 9227 wofib 9505 oancom 9611 cnfcom3clem 9665 ssttrcl 9675 ttrcltr 9676 djurf1o 9873 card1 9928 pm54.43lem 9960 en2eleq 9968 en2other2 9969 infxpenlem 9973 infxpenc2lem1 9979 sdom2en01 10262 cfpwsdom 10544 canthp1lem2 10613 gchdju1 10616 pwxpndom2 10625 pwdjundom 10627 1pi 10843 1lt2pi 10865 indpi 10867 hash2 14377 hash1snb 14391 fnpr2o 17527 fvpr1o 17530 f1otrspeq 19384 pmtrf 19392 pmtrmvd 19393 pmtrfinv 19398 lt6abl 19832 isnzr2 20434 frgpcyg 21490 vr1cl 22109 ply1coe 22192 isppw 27031 bnj906 34927 sat1el2xp 35373 satfv1fvfmla1 35417 satefvfmla1 35419 ex-sategoelelomsuc 35420 ex-sategoelel12 35421 finxpreclem1 37384 finxpreclem2 37385 finxp1o 37387 finxpreclem4 37389 finxp2o 37394 domalom 37399 onexoegt 43240 1oaomeqom 43289 oaabsb 43290 omnord1ex 43300 oaomoencom 43313 cantnftermord 43316 cantnf2 43321 omabs2 43328 omcl2 43329 1finon 43445 finona1cl 43449 1iscard 43538 |
| Copyright terms: Public domain | W3C validator |