Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8282 | . 2 ⊢ 1o = suc ∅ | |
2 | peano1 7724 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 7725 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2837 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ∅c0 4262 suc csuc 6266 ωcom 7701 1oc1o 8275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-om 7702 df-1o 8282 |
This theorem is referenced by: 2onn 8448 1one2o 8451 oaabs2 8454 omabs 8456 nnm2 8458 nnneo 8460 nneob 8461 snfi 8809 snnen2o 8972 1sdom2 8992 1sdom 8996 unxpdom2 9001 en1eqsn 9018 en2 9023 pwfiOLD 9084 wofib 9274 oancom 9379 cnfcom3clem 9433 ssttrcl 9443 ttrcltr 9444 djurf1o 9664 card1 9719 pm54.43lem 9751 en2eleq 9757 en2other2 9758 infxpenlem 9762 infxpenc2lem1 9768 sdom2en01 10051 cfpwsdom 10333 canthp1lem2 10402 gchdju1 10405 pwxpndom2 10414 pwdjundom 10416 1pi 10632 1lt2pi 10654 indpi 10656 hash2 14110 hash1snb 14124 fnpr2o 17258 fvpr1o 17261 f1otrspeq 19045 pmtrf 19053 pmtrmvd 19054 pmtrfinv 19059 lt6abl 19486 isnzr2 20524 frgpcyg 20771 vr1cl 21378 ply1coe 21457 isppw 26253 bnj906 32898 sat1el2xp 33329 satfv1fvfmla1 33373 satefvfmla1 33375 ex-sategoelelomsuc 33376 ex-sategoelel12 33377 finxpreclem1 35548 finxpreclem2 35549 finxp1o 35551 finxpreclem4 35553 finxp2o 35558 domalom 35563 |
Copyright terms: Public domain | W3C validator |