Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version |
Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7620, see 1onnALT 8502. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7620. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8340 | . 2 ⊢ 1o ∈ On | |
2 | 1ellim 8359 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
4 | elom 7747 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
5 | 1, 3, 4 | mpbir2an 709 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2104 Oncon0 6281 Lim wlim 6282 ωcom 7744 1oc1o 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-om 7745 df-1o 8328 |
This theorem is referenced by: 2onnALT 8504 1one2o 8507 oaabs2 8510 omabs 8512 nnm2 8514 nnneo 8516 nneob 8517 snfi 8869 snnen2oOLD 9048 1sdom2OLD 9062 1sdomOLD 9070 unxpdom2 9075 en1eqsnOLD 9096 en2 9101 pwfiOLD 9162 wofib 9352 oancom 9457 cnfcom3clem 9511 ssttrcl 9521 ttrcltr 9522 djurf1o 9719 card1 9774 pm54.43lem 9806 en2eleq 9814 en2other2 9815 infxpenlem 9819 infxpenc2lem1 9825 sdom2en01 10108 cfpwsdom 10390 canthp1lem2 10459 gchdju1 10462 pwxpndom2 10471 pwdjundom 10473 1pi 10689 1lt2pi 10711 indpi 10713 hash2 14169 hash1snb 14183 fnpr2o 17317 fvpr1o 17320 f1otrspeq 19104 pmtrf 19112 pmtrmvd 19113 pmtrfinv 19118 lt6abl 19545 isnzr2 20583 frgpcyg 20830 vr1cl 21437 ply1coe 21516 isppw 26312 bnj906 32959 sat1el2xp 33390 satfv1fvfmla1 33434 satefvfmla1 33436 ex-sategoelelomsuc 33437 ex-sategoelel12 33438 finxpreclem1 35608 finxpreclem2 35609 finxp1o 35611 finxpreclem4 35613 finxp2o 35618 domalom 35623 1finon 41269 finona1cl 41273 1iscard 41362 |
Copyright terms: Public domain | W3C validator |