| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7663, see 1onnALT 8551. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7663. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8392 | . 2 ⊢ 1o ∈ On | |
| 2 | 1ellim 8408 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
| 4 | elom 7794 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 Oncon0 6301 Lim wlim 6302 ωcom 7791 1oc1o 8373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-om 7792 df-1o 8380 |
| This theorem is referenced by: 2onnALT 8553 1one2o 8556 oaabs2 8559 omabs 8561 nnm2 8563 nnneo 8565 nneob 8566 snfi 8960 1sdom2ALT 9128 unxpdom2 9139 wofib 9426 oancom 9536 cnfcom3clem 9590 ssttrcl 9600 ttrcltr 9601 djurf1o 9801 card1 9856 pm54.43lem 9888 en2eleq 9894 en2other2 9895 infxpenlem 9899 infxpenc2lem1 9905 sdom2en01 10188 cfpwsdom 10470 canthp1lem2 10539 gchdju1 10542 pwxpndom2 10551 pwdjundom 10553 1pi 10769 1lt2pi 10791 indpi 10793 hash2 14307 hash1snb 14321 fnpr2o 17456 fvpr1o 17459 f1otrspeq 19354 pmtrf 19362 pmtrmvd 19363 pmtrfinv 19368 lt6abl 19802 isnzr2 20428 frgpcyg 21505 vr1cl 22125 ply1coe 22208 isppw 27046 bnj906 34934 fineqvnttrclse 35136 sat1el2xp 35415 satfv1fvfmla1 35459 satefvfmla1 35461 ex-sategoelelomsuc 35462 ex-sategoelel12 35463 finxpreclem1 37423 finxpreclem2 37424 finxp1o 37426 finxpreclem4 37428 finxp2o 37433 domalom 37438 onexoegt 43277 1oaomeqom 43326 oaabsb 43327 omnord1ex 43337 oaomoencom 43350 cantnftermord 43353 cantnf2 43358 omabs2 43365 omcl2 43366 1finon 43482 finona1cl 43486 1iscard 43575 |
| Copyright terms: Public domain | W3C validator |