![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version |
Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7725, see 1onnALT 8640. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7725. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8478 | . 2 ⊢ 1o ∈ On | |
2 | 1ellim 8498 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
3 | 2 | ax-gen 1798 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
4 | elom 7858 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
5 | 1, 3, 4 | mpbir2an 710 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2107 Oncon0 6365 Lim wlim 6366 ωcom 7855 1oc1o 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-om 7856 df-1o 8466 |
This theorem is referenced by: 2onnALT 8642 1one2o 8645 oaabs2 8648 omabs 8650 nnm2 8652 nnneo 8654 nneob 8655 snfi 9044 snnen2oOLD 9227 1sdom2ALT 9241 1sdomOLD 9249 unxpdom2 9254 en1eqsnOLD 9275 pwfiOLD 9347 wofib 9540 oancom 9646 cnfcom3clem 9700 ssttrcl 9710 ttrcltr 9711 djurf1o 9908 card1 9963 pm54.43lem 9995 en2eleq 10003 en2other2 10004 infxpenlem 10008 infxpenc2lem1 10014 sdom2en01 10297 cfpwsdom 10579 canthp1lem2 10648 gchdju1 10651 pwxpndom2 10660 pwdjundom 10662 1pi 10878 1lt2pi 10900 indpi 10902 hash2 14365 hash1snb 14379 fnpr2o 17503 fvpr1o 17506 f1otrspeq 19315 pmtrf 19323 pmtrmvd 19324 pmtrfinv 19329 lt6abl 19763 isnzr2 20297 frgpcyg 21129 vr1cl 21741 ply1coe 21820 isppw 26618 bnj906 33941 sat1el2xp 34370 satfv1fvfmla1 34414 satefvfmla1 34416 ex-sategoelelomsuc 34417 ex-sategoelel12 34418 finxpreclem1 36270 finxpreclem2 36271 finxp1o 36273 finxpreclem4 36275 finxp2o 36280 domalom 36285 onexoegt 41993 1oaomeqom 42043 oaabsb 42044 omnord1ex 42054 oaomoencom 42067 cantnftermord 42070 cantnf2 42075 omabs2 42082 omcl2 42083 1finon 42200 finona1cl 42204 1iscard 42293 |
Copyright terms: Public domain | W3C validator |