| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7691, see 1onnALT 8582. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7691. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8423 | . 2 ⊢ 1o ∈ On | |
| 2 | 1ellim 8439 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
| 4 | elom 7825 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6320 Lim wlim 6321 ωcom 7822 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-om 7823 df-1o 8411 |
| This theorem is referenced by: 2onnALT 8584 1one2o 8587 oaabs2 8590 omabs 8592 nnm2 8594 nnneo 8596 nneob 8597 snfi 8991 snfiOLD 8992 1sdom2ALT 9165 1sdomOLD 9172 unxpdom2 9177 en1eqsnOLD 9196 wofib 9474 oancom 9580 cnfcom3clem 9634 ssttrcl 9644 ttrcltr 9645 djurf1o 9842 card1 9897 pm54.43lem 9929 en2eleq 9937 en2other2 9938 infxpenlem 9942 infxpenc2lem1 9948 sdom2en01 10231 cfpwsdom 10513 canthp1lem2 10582 gchdju1 10585 pwxpndom2 10594 pwdjundom 10596 1pi 10812 1lt2pi 10834 indpi 10836 hash2 14346 hash1snb 14360 fnpr2o 17496 fvpr1o 17499 f1otrspeq 19353 pmtrf 19361 pmtrmvd 19362 pmtrfinv 19367 lt6abl 19801 isnzr2 20403 frgpcyg 21459 vr1cl 22078 ply1coe 22161 isppw 27000 bnj906 34893 sat1el2xp 35339 satfv1fvfmla1 35383 satefvfmla1 35385 ex-sategoelelomsuc 35386 ex-sategoelel12 35387 finxpreclem1 37350 finxpreclem2 37351 finxp1o 37353 finxpreclem4 37355 finxp2o 37360 domalom 37365 onexoegt 43206 1oaomeqom 43255 oaabsb 43256 omnord1ex 43266 oaomoencom 43279 cantnftermord 43282 cantnf2 43287 omabs2 43294 omcl2 43295 1finon 43411 finona1cl 43415 1iscard 43504 |
| Copyright terms: Public domain | W3C validator |