| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7734, see 1onnALT 8658. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7734. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8497 | . 2 ⊢ 1o ∈ On | |
| 2 | 1ellim 8515 | . . 3 ⊢ (Lim 𝑥 → 1o ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥) |
| 4 | elom 7869 | . 2 ⊢ (1o ∈ ω ↔ (1o ∈ On ∧ ∀𝑥(Lim 𝑥 → 1o ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Oncon0 6357 Lim wlim 6358 ωcom 7866 1oc1o 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-1o 8485 |
| This theorem is referenced by: 2onnALT 8660 1one2o 8663 oaabs2 8666 omabs 8668 nnm2 8670 nnneo 8672 nneob 8673 snfi 9062 snfiOLD 9063 snnen2oOLD 9241 1sdom2ALT 9254 1sdomOLD 9262 unxpdom2 9267 en1eqsnOLD 9286 wofib 9564 oancom 9670 cnfcom3clem 9724 ssttrcl 9734 ttrcltr 9735 djurf1o 9932 card1 9987 pm54.43lem 10019 en2eleq 10027 en2other2 10028 infxpenlem 10032 infxpenc2lem1 10038 sdom2en01 10321 cfpwsdom 10603 canthp1lem2 10672 gchdju1 10675 pwxpndom2 10684 pwdjundom 10686 1pi 10902 1lt2pi 10924 indpi 10926 hash2 14428 hash1snb 14442 fnpr2o 17576 fvpr1o 17579 f1otrspeq 19433 pmtrf 19441 pmtrmvd 19442 pmtrfinv 19447 lt6abl 19881 isnzr2 20483 frgpcyg 21539 vr1cl 22158 ply1coe 22241 isppw 27081 bnj906 34966 sat1el2xp 35406 satfv1fvfmla1 35450 satefvfmla1 35452 ex-sategoelelomsuc 35453 ex-sategoelel12 35454 finxpreclem1 37412 finxpreclem2 37413 finxp1o 37415 finxpreclem4 37417 finxp2o 37422 domalom 37427 onexoegt 43235 1oaomeqom 43284 oaabsb 43285 omnord1ex 43295 oaomoencom 43308 cantnftermord 43311 cantnf2 43316 omabs2 43323 omcl2 43324 1finon 43440 finona1cl 43444 1iscard 43533 |
| Copyright terms: Public domain | W3C validator |