MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaelxp Structured version   Visualization version   GIF version

Theorem elopaelxp 5701
Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) Avoid ax-sep 5229, ax-nul 5239, ax-pr 5365. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
elopaelxp (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem elopaelxp
StepHypRef Expression
1 vex 3440 . . . . . 6 𝑥 ∈ V
2 vex 3440 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 470 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜓 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5485 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
6 df-xp 5617 . . 3 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
75, 6sseqtrri 3979 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (V × V)
87sseli 3925 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  {copab 5148   × cxp 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5149  df-xp 5617
This theorem is referenced by:  bropaex12  5702  clwlkcompim  29753  linedegen  36177  opelopab3  37758
  Copyright terms: Public domain W3C validator