| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopaelxp | Structured version Visualization version GIF version | ||
| Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) Avoid ax-sep 5229, ax-nul 5239, ax-pr 5365. (Revised by SN, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| elopaelxp | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜓 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5485 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | df-xp 5617 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 7 | 5, 6 | sseqtrri 3979 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (V × V) |
| 8 | 7 | sseli 3925 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 {copab 5148 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: bropaex12 5702 clwlkcompim 29753 linedegen 36177 opelopab3 37758 |
| Copyright terms: Public domain | W3C validator |