MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaelxp Structured version   Visualization version   GIF version

Theorem elopaelxp 5759
Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) Avoid ax-sep 5292, ax-nul 5299, ax-pr 5421. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
elopaelxp (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem elopaelxp
StepHypRef Expression
1 vex 3467 . . . . . 6 𝑥 ∈ V
2 vex 3467 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 469 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜓 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5544 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
6 df-xp 5676 . . 3 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
75, 6sseqtrri 4009 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (V × V)
87sseli 3968 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  Vcvv 3463  {copab 5203   × cxp 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-in 3946  df-ss 3956  df-opab 5204  df-xp 5676
This theorem is referenced by:  bropaex12  5761  clwlkcompim  29610  linedegen  35768  opelopab3  37220
  Copyright terms: Public domain W3C validator