![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopaelxp | Structured version Visualization version GIF version |
Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) Avoid ax-sep 5292, ax-nul 5299, ax-pr 5421. (Revised by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
elopaelxp | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 469 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜓 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5544 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | df-xp 5676 | . . 3 ⊢ (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
7 | 5, 6 | sseqtrri 4009 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (V × V) |
8 | 7 | sseli 3968 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3463 {copab 5203 × cxp 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-in 3946 df-ss 3956 df-opab 5204 df-xp 5676 |
This theorem is referenced by: bropaex12 5761 clwlkcompim 29610 linedegen 35768 opelopab3 37220 |
Copyright terms: Public domain | W3C validator |