![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopaelxp | Structured version Visualization version GIF version |
Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) Avoid ax-sep 5317, ax-nul 5324, ax-pr 5447. (Revised by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
elopaelxp | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜓 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5569 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | df-xp 5706 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
7 | 5, 6 | sseqtrri 4046 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (V × V) |
8 | 7 | sseli 4004 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: bropaex12 5791 clwlkcompim 29816 linedegen 36107 opelopab3 37678 |
Copyright terms: Public domain | W3C validator |