![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopaelxpOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elopaelxp 5762 as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
elopaelxpOLD | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | 1 | 2eximi 1830 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
3 | elopab 5524 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) | |
4 | elvv 5747 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
5 | 2, 3, 4 | 3imtr4i 291 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3463 ⟨cop 4631 {copab 5206 × cxp 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-dif 3944 df-un 3946 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-opab 5207 df-xp 5679 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |