| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopaelxpOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of elopaelxp 5728 as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| elopaelxpOLD | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | 1 | 2eximi 1836 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| 3 | elopab 5487 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
| 4 | elvv 5713 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 〈cop 4595 {copab 5169 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |