![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopaelxpOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elopaelxp 5789 as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
elopaelxpOLD | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝐴 = 〈𝑥, 𝑦〉) | |
2 | 1 | 2eximi 1834 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
3 | elopab 5546 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
4 | elvv 5774 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |