MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaelxpOLD Structured version   Visualization version   GIF version

Theorem elopaelxpOLD 5727
Description: Obsolete version of elopaelxp 5726 as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elopaelxpOLD (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem elopaelxpOLD
StepHypRef Expression
1 simpl 484 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝐴 = ⟨𝑥, 𝑦⟩)
212eximi 1839 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
3 elopab 5489 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
4 elvv 5711 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
52, 3, 43imtr4i 292 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3448  cop 4597  {copab 5172   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5173  df-xp 5644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator