MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaelxpOLD Structured version   Visualization version   GIF version

Theorem elopaelxpOLD 5677
Description: Obsolete version of elopaelxp 5676 as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elopaelxpOLD (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem elopaelxpOLD
StepHypRef Expression
1 simpl 483 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝐴 = ⟨𝑥, 𝑦⟩)
212eximi 1838 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
3 elopab 5440 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
4 elvv 5661 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
52, 3, 43imtr4i 292 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cop 4567  {copab 5136   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator