MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaelxpOLD Structured version   Visualization version   GIF version

Theorem elopaelxpOLD 5756
Description: Obsolete version of elopaelxp 5755 as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elopaelxpOLD (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem elopaelxpOLD
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝐴 = ⟨𝑥, 𝑦⟩)
212eximi 1835 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
3 elopab 5512 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
4 elvv 5740 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
52, 3, 43imtr4i 292 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3463  cop 4612  {copab 5185   × cxp 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5186  df-xp 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator