MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompim Structured version   Visualization version   GIF version

Theorem clwlkcompim 29614
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.)
Hypotheses
Ref Expression
isclwlke.v 𝑉 = (Vtx‘𝐺)
isclwlke.i 𝐼 = (iEdg‘𝐺)
clwlkcomp.1 𝐹 = (1st𝑊)
clwlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompim (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘   𝑘,𝐼   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem clwlkcompim
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6940 . . . 4 (𝑊 ∈ (ClWalks‘𝐺) → 𝐺 ∈ V)
2 clwlks 29606 . . . . . . 7 (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}
32a1i 11 . . . . . 6 (𝐺 ∈ V → (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))})
43eleq2d 2815 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}))
5 elopaelxp 5771 . . . . . . 7 (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → 𝑊 ∈ (V × V))
65anim2i 615 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
76ex 411 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
84, 7sylbid 239 . . . 4 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
91, 8mpcom 38 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
10 isclwlke.v . . . 4 𝑉 = (Vtx‘𝐺)
11 isclwlke.i . . . 4 𝐼 = (iEdg‘𝐺)
12 clwlkcomp.1 . . . 4 𝐹 = (1st𝑊)
13 clwlkcomp.2 . . . 4 𝑃 = (2nd𝑊)
1410, 11, 12, 13clwlkcomp 29613 . . 3 ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))))
159, 14syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))))
1615ibi 266 1 (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  if-wif 1060   = wceq 1533  wcel 2098  wral 3058  Vcvv 3473  wss 3949  {csn 4632  {cpr 4634   class class class wbr 5152  {copab 5214   × cxp 5680  dom cdm 5682  wf 6549  cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  0cc0 11146  1c1 11147   + caddc 11149  ...cfz 13524  ..^cfzo 13667  chash 14329  Word cword 14504  Vtxcvtx 28829  iEdgciedg 28830  Walkscwlks 29430  ClWalkscclwlks 29604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-wlks 29433  df-clwlks 29605
This theorem is referenced by:  upgrclwlkcompim  29615
  Copyright terms: Public domain W3C validator