![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkcompim | Structured version Visualization version GIF version |
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
Ref | Expression |
---|---|
isclwlke.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isclwlke.i | ⊢ 𝐼 = (iEdg‘𝐺) |
clwlkcomp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
clwlkcomp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
Ref | Expression |
---|---|
clwlkcompim | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6880 | . . . 4 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝐺 ∈ V) | |
2 | clwlks 28720 | . . . . . . 7 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ V → (ClWalks‘𝐺) = {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) |
4 | 3 | eleq2d 2823 | . . . . 5 ⊢ (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))})) |
5 | elopaelxp 5721 | . . . . . . 7 ⊢ (𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → 𝑊 ∈ (V × V)) | |
6 | 5 | anim2i 617 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))) |
7 | 6 | ex 413 | . . . . 5 ⊢ (𝐺 ∈ V → (𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))) |
8 | 4, 7 | sylbid 239 | . . . 4 ⊢ (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))) |
9 | 1, 8 | mpcom 38 | . . 3 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))) |
10 | isclwlke.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | isclwlke.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
12 | clwlkcomp.1 | . . . 4 ⊢ 𝐹 = (1st ‘𝑊) | |
13 | clwlkcomp.2 | . . . 4 ⊢ 𝑃 = (2nd ‘𝑊) | |
14 | 10, 11, 12, 13 | clwlkcomp 28727 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
16 | 15 | ibi 266 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 if-wif 1061 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ⊆ wss 3910 {csn 4586 {cpr 4588 class class class wbr 5105 {copab 5167 × cxp 5631 dom cdm 5633 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 1st c1st 7919 2nd c2nd 7920 0cc0 11051 1c1 11052 + caddc 11054 ...cfz 13424 ..^cfzo 13567 ♯chash 14230 Word cword 14402 Vtxcvtx 27947 iEdgciedg 27948 Walkscwlks 28544 ClWalkscclwlks 28718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-wlks 28547 df-clwlks 28719 |
This theorem is referenced by: upgrclwlkcompim 28729 |
Copyright terms: Public domain | W3C validator |