MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompim Structured version   Visualization version   GIF version

Theorem clwlkcompim 29716
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.)
Hypotheses
Ref Expression
isclwlke.v 𝑉 = (Vtx‘𝐺)
isclwlke.i 𝐼 = (iEdg‘𝐺)
clwlkcomp.1 𝐹 = (1st𝑊)
clwlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompim (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘   𝑘,𝐼   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem clwlkcompim
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6898 . . . 4 (𝑊 ∈ (ClWalks‘𝐺) → 𝐺 ∈ V)
2 clwlks 29708 . . . . . . 7 (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}
32a1i 11 . . . . . 6 (𝐺 ∈ V → (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))})
43eleq2d 2815 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}))
5 elopaelxp 5730 . . . . . . 7 (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → 𝑊 ∈ (V × V))
65anim2i 617 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
76ex 412 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
84, 7sylbid 240 . . . 4 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
91, 8mpcom 38 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
10 isclwlke.v . . . 4 𝑉 = (Vtx‘𝐺)
11 isclwlke.i . . . 4 𝐼 = (iEdg‘𝐺)
12 clwlkcomp.1 . . . 4 𝐹 = (1st𝑊)
13 clwlkcomp.2 . . . 4 𝑃 = (2nd𝑊)
1410, 11, 12, 13clwlkcomp 29715 . . 3 ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))))
159, 14syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))))
1615ibi 267 1 (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3916  {csn 4591  {cpr 4593   class class class wbr 5109  {copab 5171   × cxp 5638  dom cdm 5640  wf 6509  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  0cc0 11074  1c1 11075   + caddc 11077  ...cfz 13474  ..^cfzo 13621  chash 14301  Word cword 14484  Vtxcvtx 28929  iEdgciedg 28930  Walkscwlks 29530  ClWalkscclwlks 29706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-wlks 29533  df-clwlks 29707
This theorem is referenced by:  upgrclwlkcompim  29717
  Copyright terms: Public domain W3C validator