![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkcompim | Structured version Visualization version GIF version |
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
Ref | Expression |
---|---|
isclwlke.v | β’ π = (VtxβπΊ) |
isclwlke.i | β’ πΌ = (iEdgβπΊ) |
clwlkcomp.1 | β’ πΉ = (1st βπ) |
clwlkcomp.2 | β’ π = (2nd βπ) |
Ref | Expression |
---|---|
clwlkcompim | β’ (π β (ClWalksβπΊ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6926 | . . . 4 β’ (π β (ClWalksβπΊ) β πΊ β V) | |
2 | clwlks 29018 | . . . . . . 7 β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} | |
3 | 2 | a1i 11 | . . . . . 6 β’ (πΊ β V β (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))}) |
4 | 3 | eleq2d 2819 | . . . . 5 β’ (πΊ β V β (π β (ClWalksβπΊ) β π β {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))})) |
5 | elopaelxp 5763 | . . . . . . 7 β’ (π β {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} β π β (V Γ V)) | |
6 | 5 | anim2i 617 | . . . . . 6 β’ ((πΊ β V β§ π β {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))}) β (πΊ β V β§ π β (V Γ V))) |
7 | 6 | ex 413 | . . . . 5 β’ (πΊ β V β (π β {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} β (πΊ β V β§ π β (V Γ V)))) |
8 | 4, 7 | sylbid 239 | . . . 4 β’ (πΊ β V β (π β (ClWalksβπΊ) β (πΊ β V β§ π β (V Γ V)))) |
9 | 1, 8 | mpcom 38 | . . 3 β’ (π β (ClWalksβπΊ) β (πΊ β V β§ π β (V Γ V))) |
10 | isclwlke.v | . . . 4 β’ π = (VtxβπΊ) | |
11 | isclwlke.i | . . . 4 β’ πΌ = (iEdgβπΊ) | |
12 | clwlkcomp.1 | . . . 4 β’ πΉ = (1st βπ) | |
13 | clwlkcomp.2 | . . . 4 β’ π = (2nd βπ) | |
14 | 10, 11, 12, 13 | clwlkcomp 29025 | . . 3 β’ ((πΊ β V β§ π β (V Γ V)) β (π β (ClWalksβπΊ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ)))))) |
15 | 9, 14 | syl 17 | . 2 β’ (π β (ClWalksβπΊ) β (π β (ClWalksβπΊ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ)))))) |
16 | 15 | ibi 266 | 1 β’ (π β (ClWalksβπΊ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 if-wif 1061 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3947 {csn 4627 {cpr 4629 class class class wbr 5147 {copab 5209 Γ cxp 5673 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 0cc0 11106 1c1 11107 + caddc 11109 ...cfz 13480 ..^cfzo 13623 β―chash 14286 Word cword 14460 Vtxcvtx 28245 iEdgciedg 28246 Walkscwlks 28842 ClWalkscclwlks 29016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-wlks 28845 df-clwlks 29017 |
This theorem is referenced by: upgrclwlkcompim 29027 |
Copyright terms: Public domain | W3C validator |