![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkcompim | Structured version Visualization version GIF version |
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
Ref | Expression |
---|---|
isclwlke.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isclwlke.i | ⊢ 𝐼 = (iEdg‘𝐺) |
clwlkcomp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
clwlkcomp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
Ref | Expression |
---|---|
clwlkcompim | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6940 | . . . 4 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝐺 ∈ V) | |
2 | clwlks 29606 | . . . . . . 7 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ V → (ClWalks‘𝐺) = {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) |
4 | 3 | eleq2d 2815 | . . . . 5 ⊢ (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))})) |
5 | elopaelxp 5771 | . . . . . . 7 ⊢ (𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → 𝑊 ∈ (V × V)) | |
6 | 5 | anim2i 615 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))) |
7 | 6 | ex 411 | . . . . 5 ⊢ (𝐺 ∈ V → (𝑊 ∈ {〈𝑓, 𝑔〉 ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))) |
8 | 4, 7 | sylbid 239 | . . . 4 ⊢ (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))) |
9 | 1, 8 | mpcom 38 | . . 3 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))) |
10 | isclwlke.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | isclwlke.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
12 | clwlkcomp.1 | . . . 4 ⊢ 𝐹 = (1st ‘𝑊) | |
13 | clwlkcomp.2 | . . . 4 ⊢ 𝑃 = (2nd ‘𝑊) | |
14 | 10, 11, 12, 13 | clwlkcomp 29613 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
16 | 15 | ibi 266 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 if-wif 1060 = wceq 1533 ∈ wcel 2098 ∀wral 3058 Vcvv 3473 ⊆ wss 3949 {csn 4632 {cpr 4634 class class class wbr 5152 {copab 5214 × cxp 5680 dom cdm 5682 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 1st c1st 7997 2nd c2nd 7998 0cc0 11146 1c1 11147 + caddc 11149 ...cfz 13524 ..^cfzo 13667 ♯chash 14329 Word cword 14504 Vtxcvtx 28829 iEdgciedg 28830 Walkscwlks 29430 ClWalkscclwlks 29604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-wlks 29433 df-clwlks 29605 |
This theorem is referenced by: upgrclwlkcompim 29615 |
Copyright terms: Public domain | W3C validator |