MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompim Structured version   Visualization version   GIF version

Theorem clwlkcompim 29743
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.)
Hypotheses
Ref Expression
isclwlke.v 𝑉 = (Vtx‘𝐺)
isclwlke.i 𝐼 = (iEdg‘𝐺)
clwlkcomp.1 𝐹 = (1st𝑊)
clwlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompim (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘   𝑘,𝐼   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem clwlkcompim
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6862 . . . 4 (𝑊 ∈ (ClWalks‘𝐺) → 𝐺 ∈ V)
2 clwlks 29735 . . . . . . 7 (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}
32a1i 11 . . . . . 6 (𝐺 ∈ V → (ClWalks‘𝐺) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))})
43eleq2d 2814 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}))
5 elopaelxp 5713 . . . . . . 7 (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → 𝑊 ∈ (V × V))
65anim2i 617 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))}) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
76ex 412 . . . . 5 (𝐺 ∈ V → (𝑊 ∈ {⟨𝑓, 𝑔⟩ ∣ (𝑓(Walks‘𝐺)𝑔 ∧ (𝑔‘0) = (𝑔‘(♯‘𝑓)))} → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
84, 7sylbid 240 . . . 4 (𝐺 ∈ V → (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V))))
91, 8mpcom 38 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ (V × V)))
10 isclwlke.v . . . 4 𝑉 = (Vtx‘𝐺)
11 isclwlke.i . . . 4 𝐼 = (iEdg‘𝐺)
12 clwlkcomp.1 . . . 4 𝐹 = (1st𝑊)
13 clwlkcomp.2 . . . 4 𝑃 = (2nd𝑊)
1410, 11, 12, 13clwlkcomp 29742 . . 3 ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))))
159, 14syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))))
1615ibi 267 1 (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  {csn 4579  {cpr 4581   class class class wbr 5095  {copab 5157   × cxp 5621  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  Vtxcvtx 28959  iEdgciedg 28960  Walkscwlks 29560  ClWalkscclwlks 29733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-wlks 29563  df-clwlks 29734
This theorem is referenced by:  upgrclwlkcompim  29744
  Copyright terms: Public domain W3C validator