MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropaex12 Structured version   Visualization version   GIF version

Theorem bropaex12 5791
Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020.)
Hypothesis
Ref Expression
bropaex12.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
Assertion
Ref Expression
bropaex12 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem bropaex12
StepHypRef Expression
1 df-br 5167 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 bropaex12.1 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
32eleq2i 2836 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
41, 3bitri 275 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
5 elopaelxp 5789 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ⟨𝐴, 𝐵⟩ ∈ (V × V))
64, 5sylbi 217 . 2 (𝐴𝑅𝐵 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 opelxp 5736 . 2 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
86, 7sylib 218 1 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654   class class class wbr 5166  {copab 5228   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706
This theorem is referenced by:  fpwwe  10715  efgrelexlema  19791  brsslt  27848  rgrprop  29596  rusgrprop  29598  bropabg  43285  clcllaw  47914  asslawass  47916
  Copyright terms: Public domain W3C validator