| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bropaex12 | Structured version Visualization version GIF version | ||
| Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020.) |
| Ref | Expression |
|---|---|
| bropaex12.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Ref | Expression |
|---|---|
| bropaex12 | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | bropaex12.1 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} | |
| 3 | 2 | eleq2i 2820 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | elopaelxp 5728 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 6 | 4, 5 | sylbi 217 | . 2 ⊢ (𝐴𝑅𝐵 → 〈𝐴, 𝐵〉 ∈ (V × V)) |
| 7 | opelxp 5674 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 8 | 6, 7 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 {copab 5169 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: fpwwe 10599 efgrelexlema 19679 brsslt 27697 rgrprop 29488 rusgrprop 29490 bropabg 43312 clcllaw 48179 asslawass 48181 |
| Copyright terms: Public domain | W3C validator |