![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bropaex12 | Structured version Visualization version GIF version |
Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020.) |
Ref | Expression |
---|---|
bropaex12.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Ref | Expression |
---|---|
bropaex12 | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5167 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | bropaex12.1 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} | |
3 | 2 | eleq2i 2836 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | elopaelxp 5789 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
6 | 4, 5 | sylbi 217 | . 2 ⊢ (𝐴𝑅𝐵 → 〈𝐴, 𝐵〉 ∈ (V × V)) |
7 | opelxp 5736 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
8 | 6, 7 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 |
This theorem is referenced by: fpwwe 10715 efgrelexlema 19791 brsslt 27848 rgrprop 29596 rusgrprop 29598 bropabg 43285 clcllaw 47914 asslawass 47916 |
Copyright terms: Public domain | W3C validator |