Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bropaex12 | Structured version Visualization version GIF version |
Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020.) |
Ref | Expression |
---|---|
bropaex12.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Ref | Expression |
---|---|
bropaex12 | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5079 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | bropaex12.1 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} | |
3 | 2 | eleq2i 2831 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
4 | 1, 3 | bitri 274 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | elopaelxp 5675 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
6 | 4, 5 | sylbi 216 | . 2 ⊢ (𝐴𝑅𝐵 → 〈𝐴, 𝐵〉 ∈ (V × V)) |
7 | opelxp 5624 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
8 | 6, 7 | sylib 217 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cop 4572 class class class wbr 5078 {copab 5140 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 |
This theorem is referenced by: fpwwe 10386 efgrelexlema 19336 rgrprop 27908 rusgrprop 27910 brsslt 33959 clcllaw 45337 asslawass 45339 |
Copyright terms: Public domain | W3C validator |