MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropaex12 Structured version   Visualization version   GIF version

Theorem bropaex12 5689
Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020.)
Hypothesis
Ref Expression
bropaex12.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
Assertion
Ref Expression
bropaex12 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem bropaex12
StepHypRef Expression
1 df-br 5082 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 bropaex12.1 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
32eleq2i 2828 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
41, 3bitri 275 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
5 elopaelxp 5687 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ⟨𝐴, 𝐵⟩ ∈ (V × V))
64, 5sylbi 216 . 2 (𝐴𝑅𝐵 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 opelxp 5636 . 2 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
86, 7sylib 217 1 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  cop 4571   class class class wbr 5081  {copab 5143   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606
This theorem is referenced by:  fpwwe  10452  efgrelexlema  19404  rgrprop  27976  rusgrprop  27978  brsslt  34029  clcllaw  45629  asslawass  45631
  Copyright terms: Public domain W3C validator