Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopab3 | Structured version Visualization version GIF version |
Description: Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011.) |
Ref | Expression |
---|---|
opelopab3.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopab3.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
opelopab3.3 | ⊢ (𝜒 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
opelopab3 | ⊢ (𝐵 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopaelxp 5695 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
2 | opelxp1 5649 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) → 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) |
4 | 3 | anim1i 615 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 𝐵 ∈ 𝐷) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝐷)) |
5 | 4 | ancoms 459 | . 2 ⊢ ((𝐵 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝐷)) |
6 | opelopab3.3 | . . . . 5 ⊢ (𝜒 → 𝐴 ∈ 𝐶) | |
7 | 6 | elexd 3461 | . . . 4 ⊢ (𝜒 → 𝐴 ∈ V) |
8 | 7 | anim1i 615 | . . 3 ⊢ ((𝜒 ∧ 𝐵 ∈ 𝐷) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝐷)) |
9 | 8 | ancoms 459 | . 2 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜒) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝐷)) |
10 | opelopab3.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
11 | opelopab3.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
12 | 10, 11 | opelopabg 5471 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
13 | 5, 9, 12 | pm5.21nd 799 | 1 ⊢ (𝐵 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 〈cop 4577 {copab 5149 × cxp 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5150 df-xp 5614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |