![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredg2vtx | Structured version Visualization version GIF version |
Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredg2vtx | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 28821 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐}) |
4 | 3 | 3adant3 1129 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐}) |
5 | elpr2elpr 4861 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐴 ∈ {𝑎, 𝑐}) → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}) | |
6 | 5 | 3expia 1118 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})) |
7 | eleq2 2814 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑐} → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ {𝑎, 𝑐})) | |
8 | eqeq1 2728 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑐} → (𝐶 = {𝐴, 𝑏} ↔ {𝑎, 𝑐} = {𝐴, 𝑏})) | |
9 | 8 | rexbidv 3170 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑐} → (∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏} ↔ ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})) |
10 | 7, 9 | imbi12d 344 | . . . . . 6 ⊢ (𝐶 = {𝑎, 𝑐} → ((𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) ↔ (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))) |
11 | 6, 10 | imbitrrid 245 | . . . . 5 ⊢ (𝐶 = {𝑎, 𝑐} → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
12 | 11 | com13 88 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
13 | 12 | 3ad2ant3 1132 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
14 | 13 | rexlimdvv 3202 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → (∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏})) |
15 | 4, 14 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 {cpr 4622 ‘cfv 6533 Vtxcvtx 28680 Edgcedg 28731 UPGraphcupgr 28764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-dju 9891 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28732 df-upgr 28766 |
This theorem is referenced by: usgredg2vtx 28900 uspgredg2vtxeu 28901 |
Copyright terms: Public domain | W3C validator |