![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredg2vtx | Structured version Visualization version GIF version |
Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredg2vtx | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 26593 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐}) |
4 | 3 | 3adant3 1123 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐}) |
5 | elpr2elpr 4700 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐴 ∈ {𝑎, 𝑐}) → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}) | |
6 | 5 | 3expia 1112 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})) |
7 | eleq2 2869 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑐} → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ {𝑎, 𝑐})) | |
8 | eqeq1 2797 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑐} → (𝐶 = {𝐴, 𝑏} ↔ {𝑎, 𝑐} = {𝐴, 𝑏})) | |
9 | 8 | rexbidv 3257 | . . . . . . 7 ⊢ (𝐶 = {𝑎, 𝑐} → (∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏} ↔ ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})) |
10 | 7, 9 | imbi12d 346 | . . . . . 6 ⊢ (𝐶 = {𝑎, 𝑐} → ((𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) ↔ (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))) |
11 | 6, 10 | syl5ibr 247 | . . . . 5 ⊢ (𝐶 = {𝑎, 𝑐} → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐴 ∈ 𝐶 → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
12 | 11 | com13 88 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
13 | 12 | 3ad2ant3 1126 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}))) |
14 | 13 | rexlimdvv 3253 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → (∃𝑎 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝐶 = {𝑎, 𝑐} → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏})) |
15 | 4, 14 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶) → ∃𝑏 ∈ 𝑉 𝐶 = {𝐴, 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ∃wrex 3104 {cpr 4468 ‘cfv 6217 Vtxcvtx 26452 Edgcedg 26503 UPGraphcupgr 26536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-dju 9165 df-card 9203 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-n0 11735 df-xnn0 11805 df-z 11819 df-uz 12083 df-fz 12732 df-hash 13529 df-edg 26504 df-upgr 26538 |
This theorem is referenced by: usgredg2vtx 26672 uspgredg2vtxeu 26673 |
Copyright terms: Public domain | W3C validator |