MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredg2vtx Structured version   Visualization version   GIF version

Theorem upgredg2vtx 26597
Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredg2vtx ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})
Distinct variable groups:   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem upgredg2vtx
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 26593 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑐𝑉 𝐶 = {𝑎, 𝑐})
433adant3 1123 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑎𝑉𝑐𝑉 𝐶 = {𝑎, 𝑐})
5 elpr2elpr 4700 . . . . . . 7 ((𝑎𝑉𝑐𝑉𝐴 ∈ {𝑎, 𝑐}) → ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})
653expia 1112 . . . . . 6 ((𝑎𝑉𝑐𝑉) → (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))
7 eleq2 2869 . . . . . . 7 (𝐶 = {𝑎, 𝑐} → (𝐴𝐶𝐴 ∈ {𝑎, 𝑐}))
8 eqeq1 2797 . . . . . . . 8 (𝐶 = {𝑎, 𝑐} → (𝐶 = {𝐴, 𝑏} ↔ {𝑎, 𝑐} = {𝐴, 𝑏}))
98rexbidv 3257 . . . . . . 7 (𝐶 = {𝑎, 𝑐} → (∃𝑏𝑉 𝐶 = {𝐴, 𝑏} ↔ ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))
107, 9imbi12d 346 . . . . . 6 (𝐶 = {𝑎, 𝑐} → ((𝐴𝐶 → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏}) ↔ (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})))
116, 10syl5ibr 247 . . . . 5 (𝐶 = {𝑎, 𝑐} → ((𝑎𝑉𝑐𝑉) → (𝐴𝐶 → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})))
1211com13 88 . . . 4 (𝐴𝐶 → ((𝑎𝑉𝑐𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})))
13123ad2ant3 1126 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ((𝑎𝑉𝑐𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})))
1413rexlimdvv 3253 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → (∃𝑎𝑉𝑐𝑉 𝐶 = {𝑎, 𝑐} → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏}))
154, 14mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1078   = wceq 1520  wcel 2079  wrex 3104  {cpr 4468  cfv 6217  Vtxcvtx 26452  Edgcedg 26503  UPGraphcupgr 26536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-dju 9165  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-n0 11735  df-xnn0 11805  df-z 11819  df-uz 12083  df-fz 12732  df-hash 13529  df-edg 26504  df-upgr 26538
This theorem is referenced by:  usgredg2vtx  26672  uspgredg2vtxeu  26673
  Copyright terms: Public domain W3C validator