Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopif Structured version   Visualization version   GIF version

Theorem dfopif 4707
 Description: Rewrite df-op 4479 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Assertion
Ref Expression
dfopif 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)

Proof of Theorem dfopif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-op 4479 . 2 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
2 df-3an 1082 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
32abbii 2861 . 2 {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
4 iftrue 4387 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = {{𝐴}, {𝐴, 𝐵}})
5 ibar 529 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})))
65abbi2dv 2919 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
74, 6eqtr2d 2832 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅))
8 pm2.21 123 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑥 ∈ ∅))
98adantrd 492 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → 𝑥 ∈ ∅))
109abssdv 3966 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ⊆ ∅)
11 ss0 4272 . . . . 5 ({𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ⊆ ∅ → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
1210, 11syl 17 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
13 iffalse 4390 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = ∅)
1412, 13eqtr4d 2834 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅))
157, 14pm2.61i 183 . 2 {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
161, 3, 153eqtri 2823 1 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 396   ∧ w3a 1080   = wceq 1522   ∈ wcel 2081  {cab 2775  Vcvv 3437   ⊆ wss 3859  ∅c0 4211  ifcif 4381  {csn 4472  {cpr 4474  ⟨cop 4478 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-dif 3862  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-op 4479 This theorem is referenced by:  dfopg  4708  opeq1  4710  opeq2  4711  nfop  4726  csbopg  4728  opprc  4733  opex  5248
 Copyright terms: Public domain W3C validator