![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwincl1 | Structured version Visualization version GIF version |
Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwincl1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
2 | elpwi 4608 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → 𝐴 ⊆ 𝐶) | |
3 | ssinss1 4236 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
5 | inex1g 5318 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∩ 𝐵) ∈ V) | |
6 | elpwg 4604 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
7 | 1, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∩ 𝐵) ⊆ 𝐶)) |
8 | 4, 7 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2107 Vcvv 3475 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3954 df-ss 3964 df-pw 4603 |
This theorem is referenced by: difelcarsg 33247 inelcarsg 33248 carsgclctunlem1 33254 carsgclctunlem2 33256 carsgclctunlem3 33257 carsgclctun 33258 |
Copyright terms: Public domain | W3C validator |