| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwincl1 | Structured version Visualization version GIF version | ||
| Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
| Ref | Expression |
|---|---|
| elpwincl1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwincl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
| 2 | elpwi 4570 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → 𝐴 ⊆ 𝐶) | |
| 3 | ssinss1 4209 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| 5 | inex1g 5274 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∩ 𝐵) ∈ V) | |
| 6 | elpwg 4566 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 7 | 1, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∩ 𝐵) ⊆ 𝐶)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: difelcarsg 34301 inelcarsg 34302 carsgclctunlem1 34308 carsgclctunlem2 34310 carsgclctunlem3 34311 carsgclctun 34312 |
| Copyright terms: Public domain | W3C validator |