Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwincl1 | Structured version Visualization version GIF version |
Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwincl1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
2 | elpwi 4539 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → 𝐴 ⊆ 𝐶) | |
3 | ssinss1 4168 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
5 | inex1g 5238 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∩ 𝐵) ∈ V) | |
6 | elpwg 4533 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
7 | 1, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∩ 𝐵) ⊆ 𝐶)) |
8 | 4, 7 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: difelcarsg 32177 inelcarsg 32178 carsgclctunlem1 32184 carsgclctunlem2 32186 carsgclctunlem3 32187 carsgclctun 32188 |
Copyright terms: Public domain | W3C validator |