Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwincl1 Structured version   Visualization version   GIF version

Theorem elpwincl1 30448
Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypothesis
Ref Expression
elpwincl.1 (𝜑𝐴 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwincl1 (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)

Proof of Theorem elpwincl1
StepHypRef Expression
1 elpwincl.1 . . 3 (𝜑𝐴 ∈ 𝒫 𝐶)
2 elpwi 4498 . . 3 (𝐴 ∈ 𝒫 𝐶𝐴𝐶)
3 ssinss1 4129 . . 3 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
41, 2, 33syl 18 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
5 inex1g 5188 . . 3 (𝐴 ∈ 𝒫 𝐶 → (𝐴𝐵) ∈ V)
6 elpwg 4492 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
71, 5, 63syl 18 . 2 (𝜑 → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
84, 7mpbird 260 1 (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2113  Vcvv 3398  cin 3843  wss 3844  𝒫 cpw 4489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710  ax-sep 5168
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-rab 3062  df-v 3400  df-in 3851  df-ss 3861  df-pw 4491
This theorem is referenced by:  difelcarsg  31847  inelcarsg  31848  carsgclctunlem1  31854  carsgclctunlem2  31856  carsgclctunlem3  31857  carsgclctun  31858
  Copyright terms: Public domain W3C validator