Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwincl1 Structured version   Visualization version   GIF version

Theorem elpwincl1 30775
Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypothesis
Ref Expression
elpwincl.1 (𝜑𝐴 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwincl1 (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)

Proof of Theorem elpwincl1
StepHypRef Expression
1 elpwincl.1 . . 3 (𝜑𝐴 ∈ 𝒫 𝐶)
2 elpwi 4539 . . 3 (𝐴 ∈ 𝒫 𝐶𝐴𝐶)
3 ssinss1 4168 . . 3 (𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
41, 2, 33syl 18 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
5 inex1g 5238 . . 3 (𝐴 ∈ 𝒫 𝐶 → (𝐴𝐵) ∈ V)
6 elpwg 4533 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
71, 5, 63syl 18 . 2 (𝜑 → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
84, 7mpbird 256 1 (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  difelcarsg  32177  inelcarsg  32178  carsgclctunlem1  32184  carsgclctunlem2  32186  carsgclctunlem3  32187  carsgclctun  32188
  Copyright terms: Public domain W3C validator