Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwdifcl Structured version   Visualization version   GIF version

Theorem elpwdifcl 30816
Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypothesis
Ref Expression
elpwincl.1 (𝜑𝐴 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwdifcl (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)

Proof of Theorem elpwdifcl
StepHypRef Expression
1 elpwincl.1 . . . 4 (𝜑𝐴 ∈ 𝒫 𝐶)
21elpwid 4546 . . 3 (𝜑𝐴𝐶)
32ssdifssd 4078 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
4 difexg 5251 . . 3 (𝐴 ∈ 𝒫 𝐶 → (𝐴𝐵) ∈ V)
5 elpwg 4538 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
61, 4, 53syl 18 . 2 (𝜑 → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
73, 6mpbird 256 1 (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107  Vcvv 3427  cdif 3885  wss 3888  𝒫 cpw 4535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3071  df-v 3429  df-dif 3891  df-in 3895  df-ss 3905  df-pw 4537
This theorem is referenced by:  pwldsys  32067  ldgenpisyslem1  32073  difelcarsg  32219  inelcarsg  32220  carsgclctunlem2  32228  carsgclctunlem3  32229  carsgclctun  32230
  Copyright terms: Public domain W3C validator