![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwdifcl | Structured version Visualization version GIF version |
Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwdifcl | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
2 | 1 | elpwid 4603 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
3 | 2 | ssdifssd 4134 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
4 | difexg 5317 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∖ 𝐵) ∈ V) | |
5 | elpwg 4597 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∈ V → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) |
7 | 3, 6 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3937 ⊆ wss 3940 𝒫 cpw 4594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 df-pw 4596 |
This theorem is referenced by: pwldsys 33610 ldgenpisyslem1 33616 difelcarsg 33764 inelcarsg 33765 carsgclctunlem2 33773 carsgclctunlem3 33774 carsgclctun 33775 |
Copyright terms: Public domain | W3C validator |