Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwdifcl | Structured version Visualization version GIF version |
Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwdifcl | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
2 | 1 | elpwid 4541 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
3 | 2 | ssdifssd 4073 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
4 | difexg 5246 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∖ 𝐵) ∈ V) | |
5 | elpwg 4533 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∈ V → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) |
7 | 3, 6 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pwldsys 32025 ldgenpisyslem1 32031 difelcarsg 32177 inelcarsg 32178 carsgclctunlem2 32186 carsgclctunlem3 32187 carsgclctun 32188 |
Copyright terms: Public domain | W3C validator |