![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwdifcl | Structured version Visualization version GIF version |
Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwdifcl | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
2 | 1 | elpwid 4631 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
3 | 2 | ssdifssd 4170 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
4 | difexg 5347 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∖ 𝐵) ∈ V) | |
5 | elpwg 4625 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∈ V → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) |
7 | 3, 6 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pwldsys 34121 ldgenpisyslem1 34127 difelcarsg 34275 inelcarsg 34276 carsgclctunlem2 34284 carsgclctunlem3 34285 carsgclctun 34286 |
Copyright terms: Public domain | W3C validator |