| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwdifcl | Structured version Visualization version GIF version | ||
| Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| elpwincl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) |
| Ref | Expression |
|---|---|
| elpwdifcl | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwincl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐶) | |
| 2 | 1 | elpwid 4575 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| 3 | 2 | ssdifssd 4113 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
| 4 | difexg 5287 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 → (𝐴 ∖ 𝐵) ∈ V) | |
| 5 | elpwg 4569 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∈ V → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐶 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶)) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: pwldsys 34154 ldgenpisyslem1 34160 difelcarsg 34308 inelcarsg 34309 carsgclctunlem2 34317 carsgclctunlem3 34318 carsgclctun 34319 |
| Copyright terms: Public domain | W3C validator |