Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem3 Structured version   Visualization version   GIF version

Theorem carsgclctunlem3 32296
Description: Lemma for carsgclctun 32297. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem3.1 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem3 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem3
Dummy variables 𝑒 𝑓 𝑘 𝑛 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13171 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 carsgclctunlem3.1 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
43elpwincl1 30883 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
52, 4ffvelrnd 6971 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
61, 5sselid 3920 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
73elpwdifcl 30884 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
82, 7ffvelrnd 6971 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
91, 8sselid 3920 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
106, 9xaddcld 13044 . . . . 5 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
1110adantr 481 . . . 4 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
12 pnfge 12875 . . . 4 (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
1311, 12syl 17 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
14 simpr 485 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → (𝑀𝐸) = +∞)
1513, 14breqtrrd 5103 . 2 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
16 unieq 4851 . . . . . . . . . . . . 13 (𝐴 = ∅ → 𝐴 = ∅)
17 uni0 4870 . . . . . . . . . . . . 13 ∅ = ∅
1816, 17eqtrdi 2795 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918ineq2d 4147 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∩ ∅))
20 in0 4326 . . . . . . . . . . 11 (𝐸 ∩ ∅) = ∅
2119, 20eqtrdi 2795 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = ∅)
2221fveq2d 6787 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀‘∅))
2318difeq2d 4058 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∖ ∅))
24 dif0 4307 . . . . . . . . . . 11 (𝐸 ∖ ∅) = 𝐸
2523, 24eqtrdi 2795 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = 𝐸)
2625fveq2d 6787 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀𝐸))
2722, 26oveq12d 7302 . . . . . . . 8 (𝐴 = ∅ → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
2827adantl 482 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
29 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
3029adantr 481 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
3130oveq1d 7299 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘∅) +𝑒 (𝑀𝐸)) = (0 +𝑒 (𝑀𝐸)))
322, 3ffvelrnd 6971 . . . . . . . . . 10 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
331, 32sselid 3920 . . . . . . . . 9 (𝜑 → (𝑀𝐸) ∈ ℝ*)
3433adantr 481 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀𝐸) ∈ ℝ*)
35 xaddid2 12985 . . . . . . . 8 ((𝑀𝐸) ∈ ℝ* → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3634, 35syl 17 . . . . . . 7 ((𝜑𝐴 = ∅) → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3728, 31, 363eqtrd 2783 . . . . . 6 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸))
3837, 34eqeltrd 2840 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
39 xeqlelt 31106 . . . . . . 7 ((((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4038, 34, 39syl2anc 584 . . . . . 6 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4137, 40mpbid 231 . . . . 5 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸)))
4241simpld 495 . . . 4 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
4342adantlr 712 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
44 carsgclctun.2 . . . . . . . 8 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
45 fvex 6796 . . . . . . . . 9 (toCaraSiga‘𝑀) ∈ V
4645ssex 5246 . . . . . . . 8 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 ∈ V)
47 0sdomg 8900 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
4844, 46, 473syl 18 . . . . . . 7 (𝜑 → (∅ ≺ 𝐴𝐴 ≠ ∅))
4948biimpar 478 . . . . . 6 ((𝜑𝐴 ≠ ∅) → ∅ ≺ 𝐴)
5049adantlr 712 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
51 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
52 nnenom 13709 . . . . . . . 8 ℕ ≈ ω
5352ensymi 8799 . . . . . . 7 ω ≈ ℕ
54 domentr 8808 . . . . . . 7 ((𝐴 ≼ ω ∧ ω ≈ ℕ) → 𝐴 ≼ ℕ)
5551, 53, 54sylancl 586 . . . . . 6 (𝜑𝐴 ≼ ℕ)
5655ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → 𝐴 ≼ ℕ)
57 fodomr 8924 . . . . 5 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
5850, 56, 57syl2anc 584 . . . 4 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
59 fveq2 6783 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
6059iundisj 24721 . . . . . . . . 9 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
61 fofn 6699 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
62 fniunfv 7129 . . . . . . . . . . . 12 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
6361, 62syl 17 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
64 forn 6700 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
6564unieqd 4854 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 ran 𝑓 = 𝐴)
6663, 65eqtrd 2779 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6766adantl 482 . . . . . . . . 9 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6860, 67eqtr3id 2793 . . . . . . . 8 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) = 𝐴)
6968ineq2d 4147 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7069fveq2d 6787 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7168difeq2d 4058 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7271fveq2d 6787 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7370, 72oveq12d 7302 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) = ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))))
74 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
7574ad3antrrr 727 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑂𝑉)
762ad3antrrr 727 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
7729ad3antrrr 727 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘∅) = 0)
78 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
79783adant1r 1176 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
80793adant1r 1176 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
81803adant1r 1176 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
82 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
83823adant1r 1176 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
84833adant1r 1176 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
85843adant1r 1176 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
8659iundisj2 24722 . . . . . . 7 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
8786a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))
8875adantr 481 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑂𝑉)
8976adantr 481 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9044ad4antr 729 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ (toCaraSiga‘𝑀))
91 fof 6697 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
9291ad2antlr 724 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶𝐴)
93 simpr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9492, 93ffvelrnd 6971 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝐴)
9590, 94sseldd 3923 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (toCaraSiga‘𝑀))
9677adantr 481 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
97813adant1r 1176 . . . . . . . 8 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
9888, 89, 96, 97carsgsigalem 32291 . . . . . . 7 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑒 ∈ 𝒫 𝑂𝑔 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑔)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑔)))
9991ad3antlr 728 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝐴)
100 fzossnn 13445 . . . . . . . . . . . . 13 (1..^𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (1..^𝑛) ⊆ ℕ)
102101sselda 3922 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ)
10399, 102ffvelrnd 6971 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ 𝐴)
104103ralrimiva 3104 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴)
105 dfiun2g 4961 . . . . . . . . 9 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
106104, 105syl 17 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
107 eqid 2739 . . . . . . . . . . . 12 (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘))
108107rnmpt 5867 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)}
109 fzofi 13703 . . . . . . . . . . . 12 (1..^𝑛) ∈ Fin
110 mptfi 9127 . . . . . . . . . . . 12 ((1..^𝑛) ∈ Fin → (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
111 rnfi 9111 . . . . . . . . . . . 12 ((𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
112109, 110, 111mp2b 10 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin
113108, 112eqeltrri 2837 . . . . . . . . . 10 {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin
114113a1i 11 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin)
11590adantr 481 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
116115, 103sseldd 3923 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ (toCaraSiga‘𝑀))
117116ralrimiva 3104 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
118107rnmptss 7005 . . . . . . . . . . 11 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
119117, 118syl 17 . . . . . . . . . 10 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
120108, 119eqsstrrid 3971 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ⊆ (toCaraSiga‘𝑀))
12188, 89, 96, 97, 114, 120fiunelcarsg 32292 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ (toCaraSiga‘𝑀))
122106, 121eqeltrd 2840 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
12388, 89, 95, 98, 122difelcarsg2 32289 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) ∈ (toCaraSiga‘𝑀))
1243ad3antrrr 727 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝐸 ∈ 𝒫 𝑂)
125 simpllr 773 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀𝐸) ≠ +∞)
12675, 76, 77, 81, 85, 87, 123, 124, 125carsgclctunlem2 32295 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) ≤ (𝑀𝐸))
12773, 126eqbrtrrd 5099 . . . 4 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12858, 127exlimddv 1939 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12943, 128pm2.61dane 3033 . 2 ((𝜑 ∧ (𝑀𝐸) ≠ +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
13015, 129pm2.61dane 3033 1 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2107  {cab 2716  wne 2944  wral 3065  wrex 3066  Vcvv 3433  cdif 3885  cin 3887  wss 3888  c0 4257  𝒫 cpw 4534   cuni 4840   ciun 4925  Disj wdisj 5040   class class class wbr 5075  cmpt 5158  ran crn 5591   Fn wfn 6432  wf 6433  ontowfo 6435  cfv 6437  (class class class)co 7284  ωcom 7721  cen 8739  cdom 8740  csdm 8741  Fincfn 8742  0cc0 10880  1c1 10881  +∞cpnf 11015  *cxr 11017   < clt 11018  cle 11019  cn 11982   +𝑒 cxad 12855  [,]cicc 13091  ..^cfzo 13391  Σ*cesum 32004  toCaraSigaccarsg 32277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-ac2 10228  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-ac 9881  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-ordt 17221  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-ps 18293  df-tsr 18294  df-plusf 18334  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-submnd 18440  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-subg 18761  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-subrg 20031  df-abv 20086  df-lmod 20134  df-scaf 20135  df-sra 20443  df-rgmod 20444  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-tmd 23232  df-tgp 23233  df-tsms 23287  df-trg 23320  df-xms 23482  df-ms 23483  df-tms 23484  df-nm 23747  df-ngp 23748  df-nrg 23750  df-nlm 23751  df-ii 24049  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721  df-esum 32005  df-carsg 32278
This theorem is referenced by:  carsgclctun  32297
  Copyright terms: Public domain W3C validator