Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem3 Structured version   Visualization version   GIF version

Theorem carsgclctunlem3 31483
 Description: Lemma for carsgclctun 31484. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem3.1 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem3 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem3
Dummy variables 𝑒 𝑓 𝑘 𝑛 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12814 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 carsgclctunlem3.1 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
43elpwincl1 30219 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
52, 4ffvelrnd 6850 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
61, 5sseldi 3969 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
73elpwdifcl 30220 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
82, 7ffvelrnd 6850 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
91, 8sseldi 3969 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
106, 9xaddcld 12689 . . . . 5 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
1110adantr 481 . . . 4 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
12 pnfge 12520 . . . 4 (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
1311, 12syl 17 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
14 simpr 485 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → (𝑀𝐸) = +∞)
1513, 14breqtrrd 5091 . 2 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
16 unieq 4845 . . . . . . . . . . . . 13 (𝐴 = ∅ → 𝐴 = ∅)
17 uni0 4864 . . . . . . . . . . . . 13 ∅ = ∅
1816, 17syl6eq 2877 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918ineq2d 4193 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∩ ∅))
20 in0 4349 . . . . . . . . . . 11 (𝐸 ∩ ∅) = ∅
2119, 20syl6eq 2877 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = ∅)
2221fveq2d 6673 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀‘∅))
2318difeq2d 4103 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∖ ∅))
24 dif0 4336 . . . . . . . . . . 11 (𝐸 ∖ ∅) = 𝐸
2523, 24syl6eq 2877 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = 𝐸)
2625fveq2d 6673 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀𝐸))
2722, 26oveq12d 7168 . . . . . . . 8 (𝐴 = ∅ → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
2827adantl 482 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
29 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
3029adantr 481 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
3130oveq1d 7165 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘∅) +𝑒 (𝑀𝐸)) = (0 +𝑒 (𝑀𝐸)))
322, 3ffvelrnd 6850 . . . . . . . . . 10 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
331, 32sseldi 3969 . . . . . . . . 9 (𝜑 → (𝑀𝐸) ∈ ℝ*)
3433adantr 481 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀𝐸) ∈ ℝ*)
35 xaddid2 12630 . . . . . . . 8 ((𝑀𝐸) ∈ ℝ* → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3634, 35syl 17 . . . . . . 7 ((𝜑𝐴 = ∅) → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3728, 31, 363eqtrd 2865 . . . . . 6 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸))
3837, 34eqeltrd 2918 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
39 xeqlelt 30431 . . . . . . 7 ((((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4038, 34, 39syl2anc 584 . . . . . 6 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4137, 40mpbid 233 . . . . 5 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸)))
4241simpld 495 . . . 4 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
4342adantlr 711 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
44 carsgclctun.2 . . . . . . . 8 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
45 fvex 6682 . . . . . . . . 9 (toCaraSiga‘𝑀) ∈ V
4645ssex 5222 . . . . . . . 8 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 ∈ V)
47 0sdomg 8640 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
4844, 46, 473syl 18 . . . . . . 7 (𝜑 → (∅ ≺ 𝐴𝐴 ≠ ∅))
4948biimpar 478 . . . . . 6 ((𝜑𝐴 ≠ ∅) → ∅ ≺ 𝐴)
5049adantlr 711 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
51 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
52 nnenom 13343 . . . . . . . 8 ℕ ≈ ω
5352ensymi 8553 . . . . . . 7 ω ≈ ℕ
54 domentr 8562 . . . . . . 7 ((𝐴 ≼ ω ∧ ω ≈ ℕ) → 𝐴 ≼ ℕ)
5551, 53, 54sylancl 586 . . . . . 6 (𝜑𝐴 ≼ ℕ)
5655ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → 𝐴 ≼ ℕ)
57 fodomr 8662 . . . . 5 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
5850, 56, 57syl2anc 584 . . . 4 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
59 fveq2 6669 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
6059iundisj 24083 . . . . . . . . 9 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
61 fofn 6591 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
62 fniunfv 7002 . . . . . . . . . . . 12 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
6361, 62syl 17 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
64 forn 6592 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
6564unieqd 4847 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 ran 𝑓 = 𝐴)
6663, 65eqtrd 2861 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6766adantl 482 . . . . . . . . 9 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6860, 67syl5eqr 2875 . . . . . . . 8 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) = 𝐴)
6968ineq2d 4193 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7069fveq2d 6673 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7168difeq2d 4103 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7271fveq2d 6673 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7370, 72oveq12d 7168 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) = ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))))
74 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
7574ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑂𝑉)
762ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
7729ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘∅) = 0)
78 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
79783adant1r 1171 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
80793adant1r 1171 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
81803adant1r 1171 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
82 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
83823adant1r 1171 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
84833adant1r 1171 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
85843adant1r 1171 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
8659iundisj2 24084 . . . . . . 7 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
8786a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))
8875adantr 481 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑂𝑉)
8976adantr 481 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9044ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ (toCaraSiga‘𝑀))
91 fof 6589 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
9291ad2antlr 723 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶𝐴)
93 simpr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9492, 93ffvelrnd 6850 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝐴)
9590, 94sseldd 3972 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (toCaraSiga‘𝑀))
9677adantr 481 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
97813adant1r 1171 . . . . . . . 8 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
9888, 89, 96, 97carsgsigalem 31478 . . . . . . 7 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑒 ∈ 𝒫 𝑂𝑔 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑔)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑔)))
9991ad3antlr 727 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝐴)
100 fzossnn 13081 . . . . . . . . . . . . 13 (1..^𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (1..^𝑛) ⊆ ℕ)
102101sselda 3971 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ)
10399, 102ffvelrnd 6850 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ 𝐴)
104103ralrimiva 3187 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴)
105 dfiun2g 4952 . . . . . . . . 9 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
106104, 105syl 17 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
107 eqid 2826 . . . . . . . . . . . 12 (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘))
108107rnmpt 5826 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)}
109 fzofi 13337 . . . . . . . . . . . 12 (1..^𝑛) ∈ Fin
110 mptfi 8817 . . . . . . . . . . . 12 ((1..^𝑛) ∈ Fin → (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
111 rnfi 8801 . . . . . . . . . . . 12 ((𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
112109, 110, 111mp2b 10 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin
113108, 112eqeltrri 2915 . . . . . . . . . 10 {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin
114113a1i 11 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin)
11590adantr 481 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
116115, 103sseldd 3972 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ (toCaraSiga‘𝑀))
117116ralrimiva 3187 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
118107rnmptss 6884 . . . . . . . . . . 11 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
119117, 118syl 17 . . . . . . . . . 10 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
120108, 119eqsstrrid 4020 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ⊆ (toCaraSiga‘𝑀))
12188, 89, 96, 97, 114, 120fiunelcarsg 31479 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ (toCaraSiga‘𝑀))
122106, 121eqeltrd 2918 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
12388, 89, 95, 98, 122difelcarsg2 31476 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) ∈ (toCaraSiga‘𝑀))
1243ad3antrrr 726 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝐸 ∈ 𝒫 𝑂)
125 simpllr 772 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀𝐸) ≠ +∞)
12675, 76, 77, 81, 85, 87, 123, 124, 125carsgclctunlem2 31482 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) ≤ (𝑀𝐸))
12773, 126eqbrtrrd 5087 . . . 4 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12858, 127exlimddv 1929 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12943, 128pm2.61dane 3109 . 2 ((𝜑 ∧ (𝑀𝐸) ≠ +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
13015, 129pm2.61dane 3109 1 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530  ∃wex 1773   ∈ wcel 2107  {cab 2804   ≠ wne 3021  ∀wral 3143  ∃wrex 3144  Vcvv 3500   ∖ cdif 3937   ∩ cin 3939   ⊆ wss 3940  ∅c0 4295  𝒫 cpw 4542  ∪ cuni 4837  ∪ ciun 4917  Disj wdisj 5028   class class class wbr 5063   ↦ cmpt 5143  ran crn 5555   Fn wfn 6349  ⟶wf 6350  –onto→wfo 6352  ‘cfv 6354  (class class class)co 7150  ωcom 7573   ≈ cen 8500   ≼ cdom 8501   ≺ csdm 8502  Fincfn 8503  0cc0 10531  1c1 10532  +∞cpnf 10666  ℝ*cxr 10668   < clt 10669   ≤ cle 10670  ℕcn 11632   +𝑒 cxad 12500  [,]cicc 12736  ..^cfzo 13028  Σ*cesum 31191  toCaraSigaccarsg 31464 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-fac 13629  df-bc 13658  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-ordt 16769  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-ps 17805  df-tsr 17806  df-plusf 17846  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18051  df-minusg 18052  df-sbg 18053  df-mulg 18170  df-subg 18221  df-cntz 18392  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-cring 19236  df-subrg 19469  df-abv 19524  df-lmod 19572  df-scaf 19573  df-sra 19880  df-rgmod 19881  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-haus 21858  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-tmd 22615  df-tgp 22616  df-tsms 22669  df-trg 22702  df-xms 22864  df-ms 22865  df-tms 22866  df-nm 23126  df-ngp 23127  df-nrg 23129  df-nlm 23130  df-ii 23419  df-cncf 23420  df-limc 24398  df-dv 24399  df-log 25072  df-esum 31192  df-carsg 31465 This theorem is referenced by:  carsgclctun  31484
 Copyright terms: Public domain W3C validator