Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem3 Structured version   Visualization version   GIF version

Theorem carsgclctunlem3 33863
Description: Lemma for carsgclctun 33864. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem3.1 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem3 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem3
Dummy variables 𝑒 𝑓 𝑘 𝑛 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13425 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 carsgclctunlem3.1 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
43elpwincl1 32294 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
52, 4ffvelcdmd 7089 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
61, 5sselid 3976 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
73elpwdifcl 32295 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
82, 7ffvelcdmd 7089 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
91, 8sselid 3976 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
106, 9xaddcld 13298 . . . . 5 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
1110adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
12 pnfge 13128 . . . 4 (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
1311, 12syl 17 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
14 simpr 484 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → (𝑀𝐸) = +∞)
1513, 14breqtrrd 5170 . 2 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
16 unieq 4914 . . . . . . . . . . . . 13 (𝐴 = ∅ → 𝐴 = ∅)
17 uni0 4933 . . . . . . . . . . . . 13 ∅ = ∅
1816, 17eqtrdi 2783 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918ineq2d 4208 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∩ ∅))
20 in0 4387 . . . . . . . . . . 11 (𝐸 ∩ ∅) = ∅
2119, 20eqtrdi 2783 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = ∅)
2221fveq2d 6895 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀‘∅))
2318difeq2d 4118 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∖ ∅))
24 dif0 4368 . . . . . . . . . . 11 (𝐸 ∖ ∅) = 𝐸
2523, 24eqtrdi 2783 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = 𝐸)
2625fveq2d 6895 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀𝐸))
2722, 26oveq12d 7432 . . . . . . . 8 (𝐴 = ∅ → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
2827adantl 481 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
29 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
3029adantr 480 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
3130oveq1d 7429 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘∅) +𝑒 (𝑀𝐸)) = (0 +𝑒 (𝑀𝐸)))
322, 3ffvelcdmd 7089 . . . . . . . . . 10 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
331, 32sselid 3976 . . . . . . . . 9 (𝜑 → (𝑀𝐸) ∈ ℝ*)
3433adantr 480 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀𝐸) ∈ ℝ*)
35 xaddlid 13239 . . . . . . . 8 ((𝑀𝐸) ∈ ℝ* → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3634, 35syl 17 . . . . . . 7 ((𝜑𝐴 = ∅) → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3728, 31, 363eqtrd 2771 . . . . . 6 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸))
3837, 34eqeltrd 2828 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
39 xeqlelt 32515 . . . . . . 7 ((((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4038, 34, 39syl2anc 583 . . . . . 6 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4137, 40mpbid 231 . . . . 5 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸)))
4241simpld 494 . . . 4 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
4342adantlr 714 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
44 carsgclctun.2 . . . . . . . 8 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
45 fvex 6904 . . . . . . . . 9 (toCaraSiga‘𝑀) ∈ V
4645ssex 5315 . . . . . . . 8 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 ∈ V)
47 0sdomg 9118 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
4844, 46, 473syl 18 . . . . . . 7 (𝜑 → (∅ ≺ 𝐴𝐴 ≠ ∅))
4948biimpar 477 . . . . . 6 ((𝜑𝐴 ≠ ∅) → ∅ ≺ 𝐴)
5049adantlr 714 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
51 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
52 nnenom 13963 . . . . . . . 8 ℕ ≈ ω
5352ensymi 9014 . . . . . . 7 ω ≈ ℕ
54 domentr 9023 . . . . . . 7 ((𝐴 ≼ ω ∧ ω ≈ ℕ) → 𝐴 ≼ ℕ)
5551, 53, 54sylancl 585 . . . . . 6 (𝜑𝐴 ≼ ℕ)
5655ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → 𝐴 ≼ ℕ)
57 fodomr 9142 . . . . 5 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
5850, 56, 57syl2anc 583 . . . 4 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
59 fveq2 6891 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
6059iundisj 25451 . . . . . . . . 9 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
61 fofn 6807 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
62 fniunfv 7251 . . . . . . . . . . . 12 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
6361, 62syl 17 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
64 forn 6808 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
6564unieqd 4916 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 ran 𝑓 = 𝐴)
6663, 65eqtrd 2767 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6766adantl 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6860, 67eqtr3id 2781 . . . . . . . 8 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) = 𝐴)
6968ineq2d 4208 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7069fveq2d 6895 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7168difeq2d 4118 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7271fveq2d 6895 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7370, 72oveq12d 7432 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) = ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))))
74 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
7574ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑂𝑉)
762ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
7729ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘∅) = 0)
78 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
79783adant1r 1175 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
80793adant1r 1175 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
81803adant1r 1175 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
82 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
83823adant1r 1175 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
84833adant1r 1175 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
85843adant1r 1175 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
8659iundisj2 25452 . . . . . . 7 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
8786a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))
8875adantr 480 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑂𝑉)
8976adantr 480 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9044ad4antr 731 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ (toCaraSiga‘𝑀))
91 fof 6805 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
9291ad2antlr 726 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶𝐴)
93 simpr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9492, 93ffvelcdmd 7089 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝐴)
9590, 94sseldd 3979 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (toCaraSiga‘𝑀))
9677adantr 480 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
97813adant1r 1175 . . . . . . . 8 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
9888, 89, 96, 97carsgsigalem 33858 . . . . . . 7 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑒 ∈ 𝒫 𝑂𝑔 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑔)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑔)))
9991ad3antlr 730 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝐴)
100 fzossnn 13699 . . . . . . . . . . . . 13 (1..^𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (1..^𝑛) ⊆ ℕ)
102101sselda 3978 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ)
10399, 102ffvelcdmd 7089 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ 𝐴)
104103ralrimiva 3141 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴)
105 dfiun2g 5027 . . . . . . . . 9 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
106104, 105syl 17 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
107 eqid 2727 . . . . . . . . . . . 12 (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘))
108107rnmpt 5951 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)}
109 fzofi 13957 . . . . . . . . . . . 12 (1..^𝑛) ∈ Fin
110 mptfi 9365 . . . . . . . . . . . 12 ((1..^𝑛) ∈ Fin → (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
111 rnfi 9349 . . . . . . . . . . . 12 ((𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
112109, 110, 111mp2b 10 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin
113108, 112eqeltrri 2825 . . . . . . . . . 10 {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin
114113a1i 11 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin)
11590adantr 480 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
116115, 103sseldd 3979 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ (toCaraSiga‘𝑀))
117116ralrimiva 3141 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
118107rnmptss 7127 . . . . . . . . . . 11 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
119117, 118syl 17 . . . . . . . . . 10 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
120108, 119eqsstrrid 4027 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ⊆ (toCaraSiga‘𝑀))
12188, 89, 96, 97, 114, 120fiunelcarsg 33859 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ (toCaraSiga‘𝑀))
122106, 121eqeltrd 2828 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
12388, 89, 95, 98, 122difelcarsg2 33856 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) ∈ (toCaraSiga‘𝑀))
1243ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝐸 ∈ 𝒫 𝑂)
125 simpllr 775 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀𝐸) ≠ +∞)
12675, 76, 77, 81, 85, 87, 123, 124, 125carsgclctunlem2 33862 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) ≤ (𝑀𝐸))
12773, 126eqbrtrrd 5166 . . . 4 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12858, 127exlimddv 1931 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12943, 128pm2.61dane 3024 . 2 ((𝜑 ∧ (𝑀𝐸) ≠ +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
13015, 129pm2.61dane 3024 1 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  {cab 2704  wne 2935  wral 3056  wrex 3065  Vcvv 3469  cdif 3941  cin 3943  wss 3944  c0 4318  𝒫 cpw 4598   cuni 4903   ciun 4991  Disj wdisj 5107   class class class wbr 5142  cmpt 5225  ran crn 5673   Fn wfn 6537  wf 6538  ontowfo 6540  cfv 6542  (class class class)co 7414  ωcom 7862  cen 8950  cdom 8951  csdm 8952  Fincfn 8953  0cc0 11124  1c1 11125  +∞cpnf 11261  *cxr 11263   < clt 11264  cle 11265  cn 12228   +𝑒 cxad 13108  [,]cicc 13345  ..^cfzo 13645  Σ*cesum 33569  toCaraSigaccarsg 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-ac2 10472  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203  ax-mulf 11204
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8716  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-inf 9452  df-oi 9519  df-dju 9910  df-card 9948  df-acn 9951  df-ac 10125  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ioo 13346  df-ioc 13347  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-fl 13775  df-mod 13853  df-seq 13985  df-exp 14045  df-fac 14251  df-bc 14280  df-hash 14308  df-shft 15032  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-limsup 15433  df-clim 15450  df-rlim 15451  df-sum 15651  df-ef 16029  df-sin 16031  df-cos 16032  df-pi 16034  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-pt 17411  df-prds 17414  df-ordt 17468  df-xrs 17469  df-qtop 17474  df-imas 17475  df-xps 17477  df-mre 17551  df-mrc 17552  df-acs 17554  df-ps 18543  df-tsr 18544  df-plusf 18584  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-mhm 18725  df-submnd 18726  df-grp 18878  df-minusg 18879  df-sbg 18880  df-mulg 19008  df-subg 19062  df-cntz 19252  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-subrng 20465  df-subrg 20490  df-abv 20679  df-lmod 20727  df-scaf 20728  df-sra 21040  df-rgmod 21041  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-lp 23014  df-perf 23015  df-cn 23105  df-cnp 23106  df-haus 23193  df-tx 23440  df-hmeo 23633  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-tmd 23950  df-tgp 23951  df-tsms 24005  df-trg 24038  df-xms 24200  df-ms 24201  df-tms 24202  df-nm 24465  df-ngp 24466  df-nrg 24468  df-nlm 24469  df-ii 24771  df-cncf 24772  df-limc 25769  df-dv 25770  df-log 26464  df-esum 33570  df-carsg 33845
This theorem is referenced by:  carsgclctun  33864
  Copyright terms: Public domain W3C validator