Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelcarsg Structured version   Visualization version   GIF version

Theorem inelcarsg 31564
 Description: The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
inelcarsg (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem inelcarsg
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difelcarsg.1 . . . . . 6 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
2 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
3 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
42, 3elcarsg 31558 . . . . . 6 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
51, 4mpbid 234 . . . . 5 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
65simpld 497 . . . 4 (𝜑𝐴𝑂)
7 ssinss1 4214 . . . 4 (𝐴𝑂 → (𝐴𝐵) ⊆ 𝑂)
86, 7syl 17 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑂)
9 iccssxr 12813 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
103adantr 483 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
11 simpr 487 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
1211elpwdifcl 30281 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂)
1310, 12ffvelrnd 6847 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ (0[,]+∞))
149, 13sseldi 3965 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ ℝ*)
1511elpwincl1 30280 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
1615elpwdifcl 30281 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂)
1710, 16ffvelrnd 6847 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ (0[,]+∞))
189, 17sseldi 3965 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ ℝ*)
1911elpwdifcl 30281 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2010, 19ffvelrnd 6847 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
219, 20sseldi 3965 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2218, 21xaddcld 12688 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))) ∈ ℝ*)
2311elpwincl1 30280 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂)
2410, 23ffvelrnd 6847 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ (0[,]+∞))
259, 24sseldi 3965 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ ℝ*)
26 indifundif 30279 . . . . . . . . . 10 (((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴)) = (𝑒 ∖ (𝐴𝐵))
2726fveq2i 6668 . . . . . . . . 9 (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) = (𝑀‘(𝑒 ∖ (𝐴𝐵)))
28 inelcarsg.1 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
29283expb 1116 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂)) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
3029ralrimivva 3191 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
3130adantr 483 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
32 uneq1 4132 . . . . . . . . . . . . . 14 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑎𝑏) = (((𝑒𝐴) ∖ 𝐵) ∪ 𝑏))
3332fveq2d 6669 . . . . . . . . . . . . 13 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑀‘(𝑎𝑏)) = (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)))
34 fveq2 6665 . . . . . . . . . . . . . 14 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑀𝑎) = (𝑀‘((𝑒𝐴) ∖ 𝐵)))
3534oveq1d 7165 . . . . . . . . . . . . 13 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → ((𝑀𝑎) +𝑒 (𝑀𝑏)) = ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)))
3633, 35breq12d 5072 . . . . . . . . . . . 12 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → ((𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) ↔ (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏))))
37 uneq2 4133 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝐴) → (((𝑒𝐴) ∖ 𝐵) ∪ 𝑏) = (((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴)))
3837fveq2d 6669 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝐴) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) = (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))))
39 fveq2 6665 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝐴) → (𝑀𝑏) = (𝑀‘(𝑒𝐴)))
4039oveq2d 7166 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝐴) → ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)) = ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4138, 40breq12d 5072 . . . . . . . . . . . 12 (𝑏 = (𝑒𝐴) → ((𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)) ↔ (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4236, 41rspc2v 3633 . . . . . . . . . . 11 ((((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂 ∧ (𝑒𝐴) ∈ 𝒫 𝑂) → (∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4342imp 409 . . . . . . . . . 10 (((((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂 ∧ (𝑒𝐴) ∈ 𝒫 𝑂) ∧ ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏))) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4416, 19, 31, 43syl21anc 835 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4527, 44eqbrtrrid 5095 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
46 xleadd2a 12641 . . . . . . . 8 ((((𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ ℝ* ∧ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))) ∈ ℝ* ∧ (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ ℝ*) ∧ (𝑀‘(𝑒 ∖ (𝐴𝐵))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4714, 22, 25, 45, 46syl31anc 1369 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
48 inelcarsg.2 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
492, 3elcarsg 31558 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ (toCaraSiga‘𝑀) ↔ (𝐵𝑂 ∧ ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))))
5048, 49mpbid 234 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑂 ∧ ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓)))
5150simprd 498 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))
5251adantr 483 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))
53 ineq1 4181 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒𝐴) → (𝑓𝐵) = ((𝑒𝐴) ∩ 𝐵))
5453fveq2d 6669 . . . . . . . . . . . . . 14 (𝑓 = (𝑒𝐴) → (𝑀‘(𝑓𝐵)) = (𝑀‘((𝑒𝐴) ∩ 𝐵)))
55 difeq1 4092 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒𝐴) → (𝑓𝐵) = ((𝑒𝐴) ∖ 𝐵))
5655fveq2d 6669 . . . . . . . . . . . . . 14 (𝑓 = (𝑒𝐴) → (𝑀‘(𝑓𝐵)) = (𝑀‘((𝑒𝐴) ∖ 𝐵)))
5754, 56oveq12d 7168 . . . . . . . . . . . . 13 (𝑓 = (𝑒𝐴) → ((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))))
58 fveq2 6665 . . . . . . . . . . . . 13 (𝑓 = (𝑒𝐴) → (𝑀𝑓) = (𝑀‘(𝑒𝐴)))
5957, 58eqeq12d 2837 . . . . . . . . . . . 12 (𝑓 = (𝑒𝐴) → (((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) ↔ ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6059adantl 484 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑓 = (𝑒𝐴)) → (((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) ↔ ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6115, 60rspcdv 3615 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) → ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6252, 61mpd 15 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴)))
6362oveq1d 7165 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
6415elpwincl1 30280 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝐴) ∩ 𝐵) ∈ 𝒫 𝑂)
6510, 64ffvelrnd 6847 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∩ 𝐵)) ∈ (0[,]+∞))
66 xrge0addass 30672 . . . . . . . . . 10 (((𝑀‘((𝑒𝐴) ∩ 𝐵)) ∈ (0[,]+∞) ∧ (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ (0[,]+∞) ∧ (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞)) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
6765, 17, 20, 66syl3anc 1367 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
68 inass 4196 . . . . . . . . . . 11 ((𝑒𝐴) ∩ 𝐵) = (𝑒 ∩ (𝐴𝐵))
6968fveq2i 6668 . . . . . . . . . 10 (𝑀‘((𝑒𝐴) ∩ 𝐵)) = (𝑀‘(𝑒 ∩ (𝐴𝐵)))
7069oveq1i 7160 . . . . . . . . 9 ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
7167, 70syl6eq 2872 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
725simprd 498 . . . . . . . . 9 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
7372r19.21bi 3208 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
7463, 71, 733eqtr3d 2864 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) = (𝑀𝑒))
7547, 74breqtrd 5085 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒))
76 inundif 4427 . . . . . . . 8 ((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵))) = 𝑒
7776fveq2i 6668 . . . . . . 7 (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒)
78 uneq1 4132 . . . . . . . . . . . 12 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑎𝑏) = ((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏))
7978fveq2d 6669 . . . . . . . . . . 11 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑀‘(𝑎𝑏)) = (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)))
80 fveq2 6665 . . . . . . . . . . . 12 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑀𝑎) = (𝑀‘(𝑒 ∩ (𝐴𝐵))))
8180oveq1d 7165 . . . . . . . . . . 11 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → ((𝑀𝑎) +𝑒 (𝑀𝑏)) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)))
8279, 81breq12d 5072 . . . . . . . . . 10 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → ((𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) ↔ (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏))))
83 uneq2 4133 . . . . . . . . . . . 12 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏) = ((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵))))
8483fveq2d 6669 . . . . . . . . . . 11 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) = (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))))
85 fveq2 6665 . . . . . . . . . . . 12 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → (𝑀𝑏) = (𝑀‘(𝑒 ∖ (𝐴𝐵))))
8685oveq2d 7166 . . . . . . . . . . 11 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
8784, 86breq12d 5072 . . . . . . . . . 10 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)) ↔ (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
8882, 87rspc2v 3633 . . . . . . . . 9 (((𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂 ∧ (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂) → (∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
8988imp 409 . . . . . . . 8 ((((𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂 ∧ (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂) ∧ ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏))) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9023, 12, 31, 89syl21anc 835 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9177, 90eqbrtrrid 5095 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9275, 91jca 514 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
9325, 14xaddcld 12688 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ∈ ℝ*)
943ffvelrnda 6846 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
959, 94sseldi 3965 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
96 xrletri3 12541 . . . . . 6 ((((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))))
9793, 95, 96syl2anc 586 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))))
9892, 97mpbird 259 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))
9998ralrimiva 3182 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))
1008, 99jca 514 . 2 (𝜑 → ((𝐴𝐵) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒)))
1012, 3elcarsg 31558 . 2 (𝜑 → ((𝐴𝐵) ∈ (toCaraSiga‘𝑀) ↔ ((𝐴𝐵) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))))
102100, 101mpbird 259 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  ∀wral 3138   ∖ cdif 3933   ∪ cun 3934   ∩ cin 3935   ⊆ wss 3936  𝒫 cpw 4539   class class class wbr 5059  ⟶wf 6346  ‘cfv 6350  (class class class)co 7150  0cc0 10531  +∞cpnf 10666  ℝ*cxr 10668   ≤ cle 10670   +𝑒 cxad 12499  [,]cicc 12735  toCaraSigaccarsg 31554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-xadd 12502  df-icc 12739  df-carsg 31555 This theorem is referenced by:  unelcarsg  31565  difelcarsg2  31566
 Copyright terms: Public domain W3C validator