Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctun Structured version   Visualization version   GIF version

Theorem carsgclctun 34323
Description: The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
carsgclctun (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctun
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 carsgclctun.2 . . . 4 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
21unissd 4917 . . 3 (𝜑 𝐴 (toCaraSiga‘𝑀))
3 carsgval.1 . . . 4 (𝜑𝑂𝑉)
4 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 carsgsiga.1 . . . 4 (𝜑 → (𝑀‘∅) = 0)
63, 4, 5carsguni 34310 . . 3 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
72, 6sseqtrd 4020 . 2 (𝜑 𝐴𝑂)
83adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑂𝑉)
94adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
105adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
11 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
12113adant1r 1178 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
13 carsgsiga.3 . . . . . . 7 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
14133adant1r 1178 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
15 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
1615adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ≼ ω)
171adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ⊆ (toCaraSiga‘𝑀))
18 simpr 484 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
198, 9, 10, 12, 14, 16, 17, 18carsgclctunlem3 34322 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒))
20 inex1g 5319 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2120adantl 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
22 difexg 5329 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2322adantl 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
24 prct 32726 . . . . . . . 8 (((𝑒 𝐴) ∈ V ∧ (𝑒 𝐴) ∈ V) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2521, 23, 24syl2anc 584 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2618elpwincl1 32544 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
2718elpwdifcl 32545 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
28 prssi 4821 . . . . . . . 8 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
2926, 27, 28syl2anc 584 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
30 prex 5437 . . . . . . . . 9 {(𝑒 𝐴), (𝑒 𝐴)} ∈ V
31 breq1 5146 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ≼ ω ↔ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω))
32 sseq1 4009 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ⊆ 𝒫 𝑂 ↔ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂))
3331, 323anbi23d 1441 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)))
34 unieq 4918 . . . . . . . . . . . . 13 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → 𝑥 = {(𝑒 𝐴), (𝑒 𝐴)})
3534fveq2d 6910 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑀 𝑥) = (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}))
36 esumeq1 34035 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
3735, 36breq12d 5156 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
3833, 37imbi12d 344 . . . . . . . . . 10 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))))
3938, 11vtoclg 3554 . . . . . . . . 9 ({(𝑒 𝐴), (𝑒 𝐴)} ∈ V → ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
4030, 39ax-mp 5 . . . . . . . 8 ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
41403adant1r 1178 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
4225, 29, 41mpd3an23 1465 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
43 uniprg 4923 . . . . . . . . 9 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
4426, 27, 43syl2anc 584 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
45 inundif 4479 . . . . . . . 8 ((𝑒 𝐴) ∪ (𝑒 𝐴)) = 𝑒
4644, 45eqtrdi 2793 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = 𝑒)
4746fveq2d 6910 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) = (𝑀𝑒))
48 simpr 484 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
4948fveq2d 6910 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
50 simpr 484 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5150fveq2d 6910 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
529, 26ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
539, 27ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
54 ineq2 4214 . . . . . . . . . . . . 13 ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ((𝑒 𝐴) ∩ (𝑒 𝐴)))
55 inidm 4227 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = (𝑒 𝐴)
56 inindif 4375 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ∅
5754, 55, 563eqtr3g 2800 . . . . . . . . . . . 12 ((𝑒 𝐴) = (𝑒 𝐴) → (𝑒 𝐴) = ∅)
5857adantl 481 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑒 𝐴) = ∅)
5958fveq2d 6910 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = (𝑀‘∅))
605ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘∅) = 0)
6159, 60eqtrd 2777 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = 0)
6261orcd 874 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞))
6362ex 412 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞)))
6449, 51, 26, 27, 52, 53, 63esumpr2 34068 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦) = ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6542, 47, 643brtr3d 5174 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6619, 65jca 511 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴)))))
67 iccssxr 13470 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6867, 52sselid 3981 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
6967, 53sselid 3981 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7068, 69xaddcld 13343 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ*)
714ffvelcdmda 7104 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
7267, 71sselid 3981 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
73 xrletri3 13196 . . . . 5 ((((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7470, 72, 73syl2anc 584 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7566, 74mpbird 257 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
7675ralrimiva 3146 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
773, 4elcarsg 34307 . 2 (𝜑 → ( 𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))))
787, 76, 77mpbir2and 713 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {cpr 4628   cuni 4907   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  cdom 8983  0cc0 11155  +∞cpnf 11292  *cxr 11294  cle 11296   +𝑒 cxad 13152  [,]cicc 13390  Σ*cesum 34028  toCaraSigaccarsg 34303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-ordt 17546  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-ps 18611  df-tsr 18612  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-abv 20810  df-lmod 20860  df-scaf 20861  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tmd 24080  df-tgp 24081  df-tsms 24135  df-trg 24168  df-xms 24330  df-ms 24331  df-tms 24332  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-ii 24903  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-esum 34029  df-carsg 34304
This theorem is referenced by:  carsgsiga  34324  omsmeas  34325
  Copyright terms: Public domain W3C validator