Step | Hyp | Ref
| Expression |
1 | | carsgclctun.2 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
2 | | uniss 4683 |
. . . 4
⊢ (𝐴 ⊆ (toCaraSiga‘𝑀) → ∪ 𝐴
⊆ ∪ (toCaraSiga‘𝑀)) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ∪ 𝐴
⊆ ∪ (toCaraSiga‘𝑀)) |
4 | | carsgval.1 |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
5 | | carsgval.2 |
. . . 4
⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
6 | | carsgsiga.1 |
. . . 4
⊢ (𝜑 → (𝑀‘∅) = 0) |
7 | 4, 5, 6 | carsguni 30911 |
. . 3
⊢ (𝜑 → ∪ (toCaraSiga‘𝑀) = 𝑂) |
8 | 3, 7 | sseqtrd 3866 |
. 2
⊢ (𝜑 → ∪ 𝐴
⊆ 𝑂) |
9 | 4 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑂 ∈ 𝑉) |
10 | 5 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
11 | 6 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0) |
12 | | carsgsiga.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
13 | 12 | 3adant1r 1227 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
14 | | carsgsiga.3 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
15 | 14 | 3adant1r 1227 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
16 | | carsgclctun.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≼ ω) |
17 | 16 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝐴 ≼ ω) |
18 | 1 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
19 | | simpr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) |
20 | 9, 10, 11, 13, 15, 17, 18, 19 | carsgclctunlem3 30923 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) ≤ (𝑀‘𝑒)) |
21 | | inex1g 5028 |
. . . . . . . . 9
⊢ (𝑒 ∈ 𝒫 𝑂 → (𝑒 ∩ ∪ 𝐴) ∈ V) |
22 | 21 | adantl 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ ∪ 𝐴) ∈ V) |
23 | | difexg 5035 |
. . . . . . . . 9
⊢ (𝑒 ∈ 𝒫 𝑂 → (𝑒 ∖ ∪ 𝐴) ∈ V) |
24 | 23 | adantl 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ ∪ 𝐴) ∈ V) |
25 | | prct 30036 |
. . . . . . . 8
⊢ (((𝑒 ∩ ∪ 𝐴)
∈ V ∧ (𝑒 ∖
∪ 𝐴) ∈ V) → {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼
ω) |
26 | 22, 24, 25 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼
ω) |
27 | 19 | elpwincl1 29901 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ ∪ 𝐴) ∈ 𝒫 𝑂) |
28 | 19 | elpwdifcl 29902 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ ∪ 𝐴) ∈ 𝒫 𝑂) |
29 | | prssi 4572 |
. . . . . . . 8
⊢ (((𝑒 ∩ ∪ 𝐴)
∈ 𝒫 𝑂 ∧
(𝑒 ∖ ∪ 𝐴)
∈ 𝒫 𝑂) →
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
⊆ 𝒫 𝑂) |
30 | 27, 28, 29 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ⊆ 𝒫 𝑂) |
31 | | prex 5132 |
. . . . . . . . 9
⊢ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
∈ V |
32 | | breq1 4878 |
. . . . . . . . . . . 12
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → (𝑥 ≼ ω ↔ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼
ω)) |
33 | | sseq1 3851 |
. . . . . . . . . . . 12
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → (𝑥 ⊆ 𝒫 𝑂 ↔ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ⊆ 𝒫 𝑂)) |
34 | 32, 33 | 3anbi23d 1567 |
. . . . . . . . . . 11
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼ ω ∧ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
⊆ 𝒫 𝑂))) |
35 | | unieq 4668 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → ∪ 𝑥 =
∪ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)}) |
36 | 35 | fveq2d 6441 |
. . . . . . . . . . . 12
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → (𝑀‘∪ 𝑥) = (𝑀‘∪ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)})) |
37 | | esumeq1 30637 |
. . . . . . . . . . . 12
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} →
Σ*𝑦 ∈
𝑥(𝑀‘𝑦) = Σ*𝑦 ∈ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} (𝑀‘𝑦)) |
38 | 36, 37 | breq12d 4888 |
. . . . . . . . . . 11
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → ((𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) ↔ (𝑀‘∪ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)})
≤ Σ*𝑦
∈ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
(𝑀‘𝑦))) |
39 | 34, 38 | imbi12d 336 |
. . . . . . . . . 10
⊢ (𝑥 = {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} → (((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ↔ ((𝜑 ∧ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼ ω ∧ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
⊆ 𝒫 𝑂) →
(𝑀‘∪ {(𝑒
∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)}) ≤
Σ*𝑦 ∈
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
(𝑀‘𝑦)))) |
40 | 39, 12 | vtoclg 3482 |
. . . . . . . . 9
⊢ ({(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
∈ V → ((𝜑 ∧
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
≼ ω ∧ {(𝑒
∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ⊆ 𝒫 𝑂) → (𝑀‘∪ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)})
≤ Σ*𝑦
∈ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
(𝑀‘𝑦))) |
41 | 31, 40 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝜑 ∧ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼ ω ∧ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
⊆ 𝒫 𝑂) →
(𝑀‘∪ {(𝑒
∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)}) ≤
Σ*𝑦 ∈
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
(𝑀‘𝑦)) |
42 | 41 | 3adant1r 1227 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} ≼ ω ∧ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
⊆ 𝒫 𝑂) →
(𝑀‘∪ {(𝑒
∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)}) ≤
Σ*𝑦 ∈
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
(𝑀‘𝑦)) |
43 | 26, 30, 42 | mpd3an23 1591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∪ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)})
≤ Σ*𝑦
∈ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
(𝑀‘𝑦)) |
44 | | uniprg 4674 |
. . . . . . . . 9
⊢ (((𝑒 ∩ ∪ 𝐴)
∈ 𝒫 𝑂 ∧
(𝑒 ∖ ∪ 𝐴)
∈ 𝒫 𝑂) →
∪ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} = ((𝑒 ∩ ∪ 𝐴) ∪ (𝑒 ∖ ∪ 𝐴))) |
45 | 27, 28, 44 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ∪
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
= ((𝑒 ∩ ∪ 𝐴)
∪ (𝑒 ∖ ∪ 𝐴))) |
46 | | inundif 4271 |
. . . . . . . 8
⊢ ((𝑒 ∩ ∪ 𝐴)
∪ (𝑒 ∖ ∪ 𝐴))
= 𝑒 |
47 | 45, 46 | syl6eq 2877 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ∪
{(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)}
= 𝑒) |
48 | 47 | fveq2d 6441 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘∪ {(𝑒 ∩ ∪ 𝐴),
(𝑒 ∖ ∪ 𝐴)})
= (𝑀‘𝑒)) |
49 | | simpr 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 ∩ ∪ 𝐴)) → 𝑦 = (𝑒 ∩ ∪ 𝐴)) |
50 | 49 | fveq2d 6441 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 ∩ ∪ 𝐴)) → (𝑀‘𝑦) = (𝑀‘(𝑒 ∩ ∪ 𝐴))) |
51 | | simpr 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 ∖ ∪ 𝐴)) → 𝑦 = (𝑒 ∖ ∪ 𝐴)) |
52 | 51 | fveq2d 6441 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 ∖ ∪ 𝐴)) → (𝑀‘𝑦) = (𝑀‘(𝑒 ∖ ∪ 𝐴))) |
53 | 10, 27 | ffvelrnd 6614 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ ∪ 𝐴)) ∈
(0[,]+∞)) |
54 | 10, 28 | ffvelrnd 6614 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ ∪ 𝐴)) ∈
(0[,]+∞)) |
55 | | ineq2 4037 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∩ ∪ 𝐴) =
(𝑒 ∖ ∪ 𝐴)
→ ((𝑒 ∩ ∪ 𝐴)
∩ (𝑒 ∩ ∪ 𝐴))
= ((𝑒 ∩ ∪ 𝐴)
∩ (𝑒 ∖ ∪ 𝐴))) |
56 | | inidm 4049 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∩ ∪ 𝐴)
∩ (𝑒 ∩ ∪ 𝐴))
= (𝑒 ∩ ∪ 𝐴) |
57 | | inindif 29897 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∩ ∪ 𝐴)
∩ (𝑒 ∖ ∪ 𝐴))
= ∅ |
58 | 55, 56, 57 | 3eqtr3g 2884 |
. . . . . . . . . . . 12
⊢ ((𝑒 ∩ ∪ 𝐴) =
(𝑒 ∖ ∪ 𝐴)
→ (𝑒 ∩ ∪ 𝐴) =
∅) |
59 | 58 | adantl 475 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 ∩ ∪ 𝐴) = (𝑒 ∖ ∪ 𝐴)) → (𝑒 ∩ ∪ 𝐴) = ∅) |
60 | 59 | fveq2d 6441 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 ∩ ∪ 𝐴) = (𝑒 ∖ ∪ 𝐴)) → (𝑀‘(𝑒 ∩ ∪ 𝐴)) = (𝑀‘∅)) |
61 | 6 | ad2antrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 ∩ ∪ 𝐴) = (𝑒 ∖ ∪ 𝐴)) → (𝑀‘∅) = 0) |
62 | 60, 61 | eqtrd 2861 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 ∩ ∪ 𝐴) = (𝑒 ∖ ∪ 𝐴)) → (𝑀‘(𝑒 ∩ ∪ 𝐴)) = 0) |
63 | 62 | orcd 904 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 ∩ ∪ 𝐴) = (𝑒 ∖ ∪ 𝐴)) → ((𝑀‘(𝑒 ∩ ∪ 𝐴)) = 0 ∨ (𝑀‘(𝑒 ∩ ∪ 𝐴)) = +∞)) |
64 | 63 | ex 403 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑒 ∩ ∪ 𝐴) = (𝑒 ∖ ∪ 𝐴) → ((𝑀‘(𝑒 ∩ ∪ 𝐴)) = 0 ∨ (𝑀‘(𝑒 ∩ ∪ 𝐴)) =
+∞))) |
65 | 50, 52, 27, 28, 53, 54, 64 | esumpr2 30670 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → Σ*𝑦 ∈ {(𝑒 ∩ ∪ 𝐴), (𝑒 ∖ ∪ 𝐴)} (𝑀‘𝑦) = ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴)))) |
66 | 43, 48, 65 | 3brtr3d 4906 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ≤ ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴)))) |
67 | 20, 66 | jca 507 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) ≤ (𝑀‘𝑒) ∧ (𝑀‘𝑒) ≤ ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))))) |
68 | | iccssxr 12551 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
69 | 68, 53 | sseldi 3825 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ ∪ 𝐴)) ∈
ℝ*) |
70 | 68, 54 | sseldi 3825 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ ∪ 𝐴)) ∈
ℝ*) |
71 | 69, 70 | xaddcld 12426 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) ∈
ℝ*) |
72 | 5 | ffvelrnda 6613 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
73 | 68, 72 | sseldi 3825 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈
ℝ*) |
74 | | xrletri3 12280 |
. . . . 5
⊢ ((((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) ∈ ℝ*
∧ (𝑀‘𝑒) ∈ ℝ*)
→ (((𝑀‘(𝑒 ∩ ∪ 𝐴))
+𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) = (𝑀‘𝑒) ↔ (((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) ≤ (𝑀‘𝑒) ∧ (𝑀‘𝑒) ≤ ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴)))))) |
75 | 71, 73, 74 | syl2anc 579 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) = (𝑀‘𝑒) ↔ (((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) ≤ (𝑀‘𝑒) ∧ (𝑀‘𝑒) ≤ ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴)))))) |
76 | 67, 75 | mpbird 249 |
. . 3
⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) = (𝑀‘𝑒)) |
77 | 76 | ralrimiva 3175 |
. 2
⊢ (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) = (𝑀‘𝑒)) |
78 | 4, 5 | elcarsg 30908 |
. 2
⊢ (𝜑 → (∪ 𝐴
∈ (toCaraSiga‘𝑀)
↔ (∪ 𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝐴))) = (𝑀‘𝑒)))) |
79 | 8, 77, 78 | mpbir2and 704 |
1
⊢ (𝜑 → ∪ 𝐴
∈ (toCaraSiga‘𝑀)) |