Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctun Structured version   Visualization version   GIF version

Theorem carsgclctun 31687
Description: The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
carsgclctun (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctun
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 carsgclctun.2 . . . 4 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
21unissd 4813 . . 3 (𝜑 𝐴 (toCaraSiga‘𝑀))
3 carsgval.1 . . . 4 (𝜑𝑂𝑉)
4 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 carsgsiga.1 . . . 4 (𝜑 → (𝑀‘∅) = 0)
63, 4, 5carsguni 31674 . . 3 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
72, 6sseqtrd 3958 . 2 (𝜑 𝐴𝑂)
83adantr 484 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑂𝑉)
94adantr 484 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
105adantr 484 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
11 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
12113adant1r 1174 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
13 carsgsiga.3 . . . . . . 7 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
14133adant1r 1174 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
15 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
1615adantr 484 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ≼ ω)
171adantr 484 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ⊆ (toCaraSiga‘𝑀))
18 simpr 488 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
198, 9, 10, 12, 14, 16, 17, 18carsgclctunlem3 31686 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒))
20 inex1g 5190 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2120adantl 485 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
22 difexg 5198 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2322adantl 485 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
24 prct 30479 . . . . . . . 8 (((𝑒 𝐴) ∈ V ∧ (𝑒 𝐴) ∈ V) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2521, 23, 24syl2anc 587 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2618elpwincl1 30301 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
2718elpwdifcl 30302 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
28 prssi 4717 . . . . . . . 8 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
2926, 27, 28syl2anc 587 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
30 prex 5301 . . . . . . . . 9 {(𝑒 𝐴), (𝑒 𝐴)} ∈ V
31 breq1 5036 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ≼ ω ↔ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω))
32 sseq1 3943 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ⊆ 𝒫 𝑂 ↔ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂))
3331, 323anbi23d 1436 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)))
34 unieq 4814 . . . . . . . . . . . . 13 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → 𝑥 = {(𝑒 𝐴), (𝑒 𝐴)})
3534fveq2d 6653 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑀 𝑥) = (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}))
36 esumeq1 31401 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
3735, 36breq12d 5046 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
3833, 37imbi12d 348 . . . . . . . . . 10 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))))
3938, 11vtoclg 3518 . . . . . . . . 9 ({(𝑒 𝐴), (𝑒 𝐴)} ∈ V → ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
4030, 39ax-mp 5 . . . . . . . 8 ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
41403adant1r 1174 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
4225, 29, 41mpd3an23 1460 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
43 uniprg 4821 . . . . . . . . 9 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
4426, 27, 43syl2anc 587 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
45 inundif 4388 . . . . . . . 8 ((𝑒 𝐴) ∪ (𝑒 𝐴)) = 𝑒
4644, 45eqtrdi 2852 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = 𝑒)
4746fveq2d 6653 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) = (𝑀𝑒))
48 simpr 488 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
4948fveq2d 6653 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
50 simpr 488 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5150fveq2d 6653 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
529, 26ffvelrnd 6833 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
539, 27ffvelrnd 6833 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
54 ineq2 4136 . . . . . . . . . . . . 13 ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ((𝑒 𝐴) ∩ (𝑒 𝐴)))
55 inidm 4148 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = (𝑒 𝐴)
56 inindif 30290 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ∅
5754, 55, 563eqtr3g 2859 . . . . . . . . . . . 12 ((𝑒 𝐴) = (𝑒 𝐴) → (𝑒 𝐴) = ∅)
5857adantl 485 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑒 𝐴) = ∅)
5958fveq2d 6653 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = (𝑀‘∅))
605ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘∅) = 0)
6159, 60eqtrd 2836 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = 0)
6261orcd 870 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞))
6362ex 416 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞)))
6449, 51, 26, 27, 52, 53, 63esumpr2 31434 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦) = ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6542, 47, 643brtr3d 5064 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6619, 65jca 515 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴)))))
67 iccssxr 12812 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6867, 52sseldi 3916 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
6967, 53sseldi 3916 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7068, 69xaddcld 12686 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ*)
714ffvelrnda 6832 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
7267, 71sseldi 3916 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
73 xrletri3 12539 . . . . 5 ((((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7470, 72, 73syl2anc 587 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7566, 74mpbird 260 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
7675ralrimiva 3152 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
773, 4elcarsg 31671 . 2 (𝜑 → ( 𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))))
787, 76, 77mpbir2and 712 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  cdif 3881  cun 3882  cin 3883  wss 3884  c0 4246  𝒫 cpw 4500  {cpr 4530   cuni 4803   class class class wbr 5033  wf 6324  cfv 6328  (class class class)co 7139  ωcom 7564  cdom 8494  0cc0 10530  +∞cpnf 10665  *cxr 10667  cle 10669   +𝑒 cxad 12497  [,]cicc 12733  Σ*cesum 31394  toCaraSigaccarsg 31667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-ordt 16769  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-ps 17805  df-tsr 17806  df-plusf 17846  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-subrg 19529  df-abv 19584  df-lmod 19632  df-scaf 19633  df-sra 19940  df-rgmod 19941  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tgp 22681  df-tsms 22735  df-trg 22768  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-ii 23485  df-cncf 23486  df-limc 24472  df-dv 24473  df-log 25151  df-esum 31395  df-carsg 31668
This theorem is referenced by:  carsgsiga  31688  omsmeas  31689
  Copyright terms: Public domain W3C validator