Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctun Structured version   Visualization version   GIF version

Theorem carsgclctun 30924
Description: The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
carsgclctun (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctun
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 carsgclctun.2 . . . 4 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
2 uniss 4683 . . . 4 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 (toCaraSiga‘𝑀))
31, 2syl 17 . . 3 (𝜑 𝐴 (toCaraSiga‘𝑀))
4 carsgval.1 . . . 4 (𝜑𝑂𝑉)
5 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
6 carsgsiga.1 . . . 4 (𝜑 → (𝑀‘∅) = 0)
74, 5, 6carsguni 30911 . . 3 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
83, 7sseqtrd 3866 . 2 (𝜑 𝐴𝑂)
94adantr 474 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑂𝑉)
105adantr 474 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
116adantr 474 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
12 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
13123adant1r 1227 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
14 carsgsiga.3 . . . . . . 7 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
15143adant1r 1227 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
16 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
1716adantr 474 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ≼ ω)
181adantr 474 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ⊆ (toCaraSiga‘𝑀))
19 simpr 479 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
209, 10, 11, 13, 15, 17, 18, 19carsgclctunlem3 30923 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒))
21 inex1g 5028 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2221adantl 475 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
23 difexg 5035 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2423adantl 475 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
25 prct 30036 . . . . . . . 8 (((𝑒 𝐴) ∈ V ∧ (𝑒 𝐴) ∈ V) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2622, 24, 25syl2anc 579 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2719elpwincl1 29901 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
2819elpwdifcl 29902 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
29 prssi 4572 . . . . . . . 8 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
3027, 28, 29syl2anc 579 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
31 prex 5132 . . . . . . . . 9 {(𝑒 𝐴), (𝑒 𝐴)} ∈ V
32 breq1 4878 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ≼ ω ↔ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω))
33 sseq1 3851 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ⊆ 𝒫 𝑂 ↔ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂))
3432, 333anbi23d 1567 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)))
35 unieq 4668 . . . . . . . . . . . . 13 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → 𝑥 = {(𝑒 𝐴), (𝑒 𝐴)})
3635fveq2d 6441 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑀 𝑥) = (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}))
37 esumeq1 30637 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
3836, 37breq12d 4888 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
3934, 38imbi12d 336 . . . . . . . . . 10 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))))
4039, 12vtoclg 3482 . . . . . . . . 9 ({(𝑒 𝐴), (𝑒 𝐴)} ∈ V → ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
4131, 40ax-mp 5 . . . . . . . 8 ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
42413adant1r 1227 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
4326, 30, 42mpd3an23 1591 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
44 uniprg 4674 . . . . . . . . 9 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
4527, 28, 44syl2anc 579 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
46 inundif 4271 . . . . . . . 8 ((𝑒 𝐴) ∪ (𝑒 𝐴)) = 𝑒
4745, 46syl6eq 2877 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = 𝑒)
4847fveq2d 6441 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) = (𝑀𝑒))
49 simpr 479 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5049fveq2d 6441 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
51 simpr 479 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5251fveq2d 6441 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
5310, 27ffvelrnd 6614 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
5410, 28ffvelrnd 6614 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
55 ineq2 4037 . . . . . . . . . . . . 13 ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ((𝑒 𝐴) ∩ (𝑒 𝐴)))
56 inidm 4049 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = (𝑒 𝐴)
57 inindif 29897 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ∅
5855, 56, 573eqtr3g 2884 . . . . . . . . . . . 12 ((𝑒 𝐴) = (𝑒 𝐴) → (𝑒 𝐴) = ∅)
5958adantl 475 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑒 𝐴) = ∅)
6059fveq2d 6441 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = (𝑀‘∅))
616ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘∅) = 0)
6260, 61eqtrd 2861 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = 0)
6362orcd 904 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞))
6463ex 403 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞)))
6550, 52, 27, 28, 53, 54, 64esumpr2 30670 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦) = ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6643, 48, 653brtr3d 4906 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6720, 66jca 507 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴)))))
68 iccssxr 12551 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6968, 53sseldi 3825 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7068, 54sseldi 3825 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7169, 70xaddcld 12426 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ*)
725ffvelrnda 6613 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
7368, 72sseldi 3825 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
74 xrletri3 12280 . . . . 5 ((((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7571, 73, 74syl2anc 579 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7667, 75mpbird 249 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
7776ralrimiva 3175 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
784, 5elcarsg 30908 . 2 (𝜑 → ( 𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))))
798, 77, 78mpbir2and 704 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cdif 3795  cun 3796  cin 3797  wss 3798  c0 4146  𝒫 cpw 4380  {cpr 4401   cuni 4660   class class class wbr 4875  wf 6123  cfv 6127  (class class class)co 6910  ωcom 7331  cdom 8226  0cc0 10259  +∞cpnf 10395  *cxr 10397  cle 10399   +𝑒 cxad 12237  [,]cicc 12473  Σ*cesum 30630  toCaraSigaccarsg 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-ac2 9607  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-disj 4844  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-acn 9088  df-ac 9259  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-fac 13361  df-bc 13390  df-hash 13418  df-shft 14191  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-limsup 14586  df-clim 14603  df-rlim 14604  df-sum 14801  df-ef 15177  df-sin 15179  df-cos 15180  df-pi 15182  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-ordt 16521  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-ps 17560  df-tsr 17561  df-plusf 17601  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-mulg 17902  df-subg 17949  df-cntz 18107  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-subrg 19141  df-abv 19180  df-lmod 19228  df-scaf 19229  df-sra 19540  df-rgmod 19541  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-tmd 22253  df-tgp 22254  df-tsms 22307  df-trg 22340  df-xms 22502  df-ms 22503  df-tms 22504  df-nm 22764  df-ngp 22765  df-nrg 22767  df-nlm 22768  df-ii 23057  df-cncf 23058  df-limc 24036  df-dv 24037  df-log 24709  df-esum 30631  df-carsg 30905
This theorem is referenced by:  carsgsiga  30925  omsmeas  30926
  Copyright terms: Public domain W3C validator