Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem1 Structured version   Visualization version   GIF version

Theorem carsgclctunlem1 34282
Description: Lemma for carsgclctun 34286. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem1.1 (𝜑Disj 𝑦𝐴 𝑦)
carsgclctunlem1.2 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem1
Dummy variables 𝑎 𝑒 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4942 . . . . 5 (𝑎 = ∅ → 𝑎 = ∅)
21ineq2d 4241 . . . 4 (𝑎 = ∅ → (𝐸 𝑎) = (𝐸 ∅))
32fveq2d 6924 . . 3 (𝑎 = ∅ → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 ∅)))
4 esumeq1 33998 . . 3 (𝑎 = ∅ → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
53, 4eqeq12d 2756 . 2 (𝑎 = ∅ → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦))))
6 unieq 4942 . . . . 5 (𝑎 = 𝑏 𝑎 = 𝑏)
76ineq2d 4241 . . . 4 (𝑎 = 𝑏 → (𝐸 𝑎) = (𝐸 𝑏))
87fveq2d 6924 . . 3 (𝑎 = 𝑏 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝑏)))
9 esumeq1 33998 . . 3 (𝑎 = 𝑏 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
108, 9eqeq12d 2756 . 2 (𝑎 = 𝑏 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))))
11 unieq 4942 . . . . 5 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
1211ineq2d 4241 . . . 4 (𝑎 = (𝑏 ∪ {𝑥}) → (𝐸 𝑎) = (𝐸 (𝑏 ∪ {𝑥})))
1312fveq2d 6924 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))))
14 esumeq1 33998 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
1513, 14eqeq12d 2756 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
16 unieq 4942 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝐴)
1716ineq2d 4241 . . . 4 (𝑎 = 𝐴 → (𝐸 𝑎) = (𝐸 𝐴))
1817fveq2d 6924 . . 3 (𝑎 = 𝐴 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝐴)))
19 esumeq1 33998 . . 3 (𝑎 = 𝐴 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
2018, 19eqeq12d 2756 . 2 (𝑎 = 𝐴 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦))))
21 carsgsiga.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
22 uni0 4959 . . . . . 6 ∅ = ∅
2322ineq2i 4238 . . . . 5 (𝐸 ∅) = (𝐸 ∩ ∅)
24 in0 4418 . . . . 5 (𝐸 ∩ ∅) = ∅
2523, 24eqtri 2768 . . . 4 (𝐸 ∅) = ∅
2625fveq2i 6923 . . 3 (𝑀‘(𝐸 ∅)) = (𝑀‘∅)
27 esumnul 34012 . . 3 Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)) = 0
2821, 26, 273eqtr4g 2805 . 2 (𝜑 → (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
29 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
3029eqcomd 2746 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸 𝑏)))
31 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
3231ineq2d 4241 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝐸𝑦) = (𝐸𝑥))
3332fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
34 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑥 ∈ (𝐴𝑏))
35 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
37 carsgclctunlem1.2 . . . . . . . . . 10 (𝜑𝐸 ∈ 𝒫 𝑂)
3837adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝐸 ∈ 𝒫 𝑂)
3938elpwincl1 32555 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸𝑥) ∈ 𝒫 𝑂)
4036, 39ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘(𝐸𝑥)) ∈ (0[,]+∞))
4133, 34, 40esumsn 34029 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4241adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4330, 42oveq12d 7466 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
44 nfv 1913 . . . . . 6 𝑦(𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏)))
45 nfcv 2908 . . . . . 6 𝑦𝑏
46 nfcv 2908 . . . . . 6 𝑦{𝑥}
47 vex 3492 . . . . . . 7 𝑏 ∈ V
4847a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
49 vsnex 5449 . . . . . . 7 {𝑥} ∈ V
5049a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → {𝑥} ∈ V)
5134eldifbd 3989 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ¬ 𝑥𝑏)
52 disjsn 4736 . . . . . . 7 ((𝑏 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑏)
5351, 52sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑥}) = ∅)
5435ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5537ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝐸 ∈ 𝒫 𝑂)
5655elpwincl1 32555 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝐸𝑦) ∈ 𝒫 𝑂)
5754, 56ffvelcdmd 7119 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
5835ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5937ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝐸 ∈ 𝒫 𝑂)
6059elpwincl1 32555 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝐸𝑦) ∈ 𝒫 𝑂)
6158, 60ffvelcdmd 7119 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
6244, 45, 46, 48, 50, 53, 57, 61esumsplit 34017 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
6362adantr 480 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
64 uniun 4954 . . . . . . . 8 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
65 unisnv 4951 . . . . . . . . 9 {𝑥} = 𝑥
6665uneq2i 4188 . . . . . . . 8 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
6764, 66eqtri 2768 . . . . . . 7 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
6867ineq2i 4238 . . . . . 6 (𝐸 (𝑏 ∪ {𝑥})) = (𝐸 ∩ ( 𝑏𝑥))
6968fveq2i 6923 . . . . 5 (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))
70 inass 4249 . . . . . . . . . 10 ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏))
71 indir 4305 . . . . . . . . . . . 12 (( 𝑏𝑥) ∩ 𝑏) = (( 𝑏 𝑏) ∪ (𝑥 𝑏))
72 inidm 4248 . . . . . . . . . . . . . . 15 ( 𝑏 𝑏) = 𝑏
7372a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 𝑏) = 𝑏)
74 incom 4230 . . . . . . . . . . . . . . 15 ( 𝑏𝑥) = (𝑥 𝑏)
75 carsgclctunlem1.1 . . . . . . . . . . . . . . . . 17 (𝜑Disj 𝑦𝐴 𝑦)
7675adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Disj 𝑦𝐴 𝑦)
77 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → 𝑏𝐴)
7877adantrr 716 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏𝐴)
7976, 78, 34disjuniel 32619 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏𝑥) = ∅)
8074, 79eqtr3id 2794 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑥 𝑏) = ∅)
8173, 80uneq12d 4192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = ( 𝑏 ∪ ∅))
82 un0 4417 . . . . . . . . . . . . 13 ( 𝑏 ∪ ∅) = 𝑏
8381, 82eqtrdi 2796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = 𝑏)
8471, 83eqtrid 2792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∩ 𝑏) = 𝑏)
8584ineq2d 4241 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏)) = (𝐸 𝑏))
8670, 85eqtrid 2792 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 𝑏))
8786fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) = (𝑀‘(𝐸 𝑏)))
88 indif2 4300 . . . . . . . . . 10 (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)
89 uncom 4181 . . . . . . . . . . . . . 14 ( 𝑏𝑥) = (𝑥 𝑏)
9089difeq1i 4145 . . . . . . . . . . . . 13 (( 𝑏𝑥) ∖ 𝑏) = ((𝑥 𝑏) ∖ 𝑏)
91 difun2 4504 . . . . . . . . . . . . . 14 ((𝑥 𝑏) ∖ 𝑏) = (𝑥 𝑏)
92 disj3 4477 . . . . . . . . . . . . . . 15 ((𝑥 𝑏) = ∅ ↔ 𝑥 = (𝑥 𝑏))
9392biimpi 216 . . . . . . . . . . . . . 14 ((𝑥 𝑏) = ∅ → 𝑥 = (𝑥 𝑏))
9491, 93eqtr4id 2799 . . . . . . . . . . . . 13 ((𝑥 𝑏) = ∅ → ((𝑥 𝑏) ∖ 𝑏) = 𝑥)
9590, 94eqtrid 2792 . . . . . . . . . . . 12 ((𝑥 𝑏) = ∅ → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9680, 95syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9796ineq2d 4241 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = (𝐸𝑥))
9888, 97eqtr3id 2794 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏) = (𝐸𝑥))
9998fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)) = (𝑀‘(𝐸𝑥)))
10087, 99oveq12d 7466 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
101 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
102101adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑂𝑉)
10335adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
10421adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → (𝑀‘∅) = 0)
105 carsgsiga.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
1061053adant1r 1177 . . . . . . . . . . . 12 (((𝜑𝑏𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
107 fiunelcarsg.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
108 ssfi 9240 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑏𝐴) → 𝑏 ∈ Fin)
109107, 108sylan 579 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ∈ Fin)
110 fiunelcarsg.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
111110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏𝐴) → 𝐴 ⊆ (toCaraSiga‘𝑀))
11277, 111sstrd 4019 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ⊆ (toCaraSiga‘𝑀))
113102, 103, 104, 106, 109, 112fiunelcarsg 34281 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → 𝑏 ∈ (toCaraSiga‘𝑀))
114101, 35elcarsg 34270 . . . . . . . . . . . 12 (𝜑 → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
115114adantr 480 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
116113, 115mpbid 232 . . . . . . . . . 10 ((𝜑𝑏𝐴) → ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒)))
117116simprd 495 . . . . . . . . 9 ((𝜑𝑏𝐴) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
118117adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
11938elpwincl1 32555 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ ( 𝑏𝑥)) ∈ 𝒫 𝑂)
120 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → 𝑒 = (𝐸 ∩ ( 𝑏𝑥)))
121120ineq1d 4240 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏))
122121fveq2d 6924 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)))
123120difeq1d 4148 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))
124123fveq2d 6924 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)))
125122, 124oveq12d 7466 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → ((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))))
126120fveq2d 6924 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀𝑒) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
127125, 126eqeq12d 2756 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) ↔ ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
128119, 127rspcdv 3627 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
129118, 128mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
130100, 129eqtr3d 2782 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
131130adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
13269, 131eqtr4id 2799 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
13343, 63, 1323eqtr4rd 2791 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
134133ex 412 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
1355, 10, 15, 20, 28, 134, 107findcard2d 9232 1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  Disj wdisj 5133   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  cdom 9001  Fincfn 9003  0cc0 11184  +∞cpnf 11321  cle 11325   +𝑒 cxad 13173  [,]cicc 13410  Σ*cesum 33991  toCaraSigaccarsg 34266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-ordt 17561  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-ps 18636  df-tsr 18637  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-abv 20832  df-lmod 20882  df-scaf 20883  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tmd 24101  df-tgp 24102  df-tsms 24156  df-trg 24189  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620  df-ii 24922  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-esum 33992  df-carsg 34267
This theorem is referenced by:  carsggect  34283  carsgclctunlem2  34284
  Copyright terms: Public domain W3C validator