Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem1 Structured version   Visualization version   GIF version

Theorem carsgclctunlem1 34302
Description: Lemma for carsgclctun 34306. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem1.1 (𝜑Disj 𝑦𝐴 𝑦)
carsgclctunlem1.2 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem1
Dummy variables 𝑎 𝑒 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4878 . . . . 5 (𝑎 = ∅ → 𝑎 = ∅)
21ineq2d 4179 . . . 4 (𝑎 = ∅ → (𝐸 𝑎) = (𝐸 ∅))
32fveq2d 6844 . . 3 (𝑎 = ∅ → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 ∅)))
4 esumeq1 34018 . . 3 (𝑎 = ∅ → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
53, 4eqeq12d 2745 . 2 (𝑎 = ∅ → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦))))
6 unieq 4878 . . . . 5 (𝑎 = 𝑏 𝑎 = 𝑏)
76ineq2d 4179 . . . 4 (𝑎 = 𝑏 → (𝐸 𝑎) = (𝐸 𝑏))
87fveq2d 6844 . . 3 (𝑎 = 𝑏 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝑏)))
9 esumeq1 34018 . . 3 (𝑎 = 𝑏 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
108, 9eqeq12d 2745 . 2 (𝑎 = 𝑏 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))))
11 unieq 4878 . . . . 5 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
1211ineq2d 4179 . . . 4 (𝑎 = (𝑏 ∪ {𝑥}) → (𝐸 𝑎) = (𝐸 (𝑏 ∪ {𝑥})))
1312fveq2d 6844 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))))
14 esumeq1 34018 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
1513, 14eqeq12d 2745 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
16 unieq 4878 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝐴)
1716ineq2d 4179 . . . 4 (𝑎 = 𝐴 → (𝐸 𝑎) = (𝐸 𝐴))
1817fveq2d 6844 . . 3 (𝑎 = 𝐴 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝐴)))
19 esumeq1 34018 . . 3 (𝑎 = 𝐴 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
2018, 19eqeq12d 2745 . 2 (𝑎 = 𝐴 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦))))
21 carsgsiga.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
22 uni0 4895 . . . . . 6 ∅ = ∅
2322ineq2i 4176 . . . . 5 (𝐸 ∅) = (𝐸 ∩ ∅)
24 in0 4354 . . . . 5 (𝐸 ∩ ∅) = ∅
2523, 24eqtri 2752 . . . 4 (𝐸 ∅) = ∅
2625fveq2i 6843 . . 3 (𝑀‘(𝐸 ∅)) = (𝑀‘∅)
27 esumnul 34032 . . 3 Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)) = 0
2821, 26, 273eqtr4g 2789 . 2 (𝜑 → (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
29 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
3029eqcomd 2735 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸 𝑏)))
31 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
3231ineq2d 4179 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝐸𝑦) = (𝐸𝑥))
3332fveq2d 6844 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
34 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑥 ∈ (𝐴𝑏))
35 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
37 carsgclctunlem1.2 . . . . . . . . . 10 (𝜑𝐸 ∈ 𝒫 𝑂)
3837adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝐸 ∈ 𝒫 𝑂)
3938elpwincl1 32505 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸𝑥) ∈ 𝒫 𝑂)
4036, 39ffvelcdmd 7039 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘(𝐸𝑥)) ∈ (0[,]+∞))
4133, 34, 40esumsn 34049 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4241adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4330, 42oveq12d 7387 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
44 nfv 1914 . . . . . 6 𝑦(𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏)))
45 nfcv 2891 . . . . . 6 𝑦𝑏
46 nfcv 2891 . . . . . 6 𝑦{𝑥}
47 vex 3448 . . . . . . 7 𝑏 ∈ V
4847a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
49 vsnex 5384 . . . . . . 7 {𝑥} ∈ V
5049a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → {𝑥} ∈ V)
5134eldifbd 3924 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ¬ 𝑥𝑏)
52 disjsn 4671 . . . . . . 7 ((𝑏 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑏)
5351, 52sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑥}) = ∅)
5435ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5537ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝐸 ∈ 𝒫 𝑂)
5655elpwincl1 32505 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝐸𝑦) ∈ 𝒫 𝑂)
5754, 56ffvelcdmd 7039 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
5835ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5937ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝐸 ∈ 𝒫 𝑂)
6059elpwincl1 32505 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝐸𝑦) ∈ 𝒫 𝑂)
6158, 60ffvelcdmd 7039 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
6244, 45, 46, 48, 50, 53, 57, 61esumsplit 34037 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
6362adantr 480 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
64 uniun 4890 . . . . . . . 8 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
65 unisnv 4887 . . . . . . . . 9 {𝑥} = 𝑥
6665uneq2i 4124 . . . . . . . 8 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
6764, 66eqtri 2752 . . . . . . 7 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
6867ineq2i 4176 . . . . . 6 (𝐸 (𝑏 ∪ {𝑥})) = (𝐸 ∩ ( 𝑏𝑥))
6968fveq2i 6843 . . . . 5 (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))
70 inass 4187 . . . . . . . . . 10 ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏))
71 indir 4245 . . . . . . . . . . . 12 (( 𝑏𝑥) ∩ 𝑏) = (( 𝑏 𝑏) ∪ (𝑥 𝑏))
72 inidm 4186 . . . . . . . . . . . . . . 15 ( 𝑏 𝑏) = 𝑏
7372a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 𝑏) = 𝑏)
74 incom 4168 . . . . . . . . . . . . . . 15 ( 𝑏𝑥) = (𝑥 𝑏)
75 carsgclctunlem1.1 . . . . . . . . . . . . . . . . 17 (𝜑Disj 𝑦𝐴 𝑦)
7675adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Disj 𝑦𝐴 𝑦)
77 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → 𝑏𝐴)
7877adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏𝐴)
7976, 78, 34disjuniel 32577 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏𝑥) = ∅)
8074, 79eqtr3id 2778 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑥 𝑏) = ∅)
8173, 80uneq12d 4128 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = ( 𝑏 ∪ ∅))
82 un0 4353 . . . . . . . . . . . . 13 ( 𝑏 ∪ ∅) = 𝑏
8381, 82eqtrdi 2780 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = 𝑏)
8471, 83eqtrid 2776 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∩ 𝑏) = 𝑏)
8584ineq2d 4179 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏)) = (𝐸 𝑏))
8670, 85eqtrid 2776 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 𝑏))
8786fveq2d 6844 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) = (𝑀‘(𝐸 𝑏)))
88 indif2 4240 . . . . . . . . . 10 (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)
89 uncom 4117 . . . . . . . . . . . . . 14 ( 𝑏𝑥) = (𝑥 𝑏)
9089difeq1i 4081 . . . . . . . . . . . . 13 (( 𝑏𝑥) ∖ 𝑏) = ((𝑥 𝑏) ∖ 𝑏)
91 difun2 4440 . . . . . . . . . . . . . 14 ((𝑥 𝑏) ∖ 𝑏) = (𝑥 𝑏)
92 disj3 4413 . . . . . . . . . . . . . . 15 ((𝑥 𝑏) = ∅ ↔ 𝑥 = (𝑥 𝑏))
9392biimpi 216 . . . . . . . . . . . . . 14 ((𝑥 𝑏) = ∅ → 𝑥 = (𝑥 𝑏))
9491, 93eqtr4id 2783 . . . . . . . . . . . . 13 ((𝑥 𝑏) = ∅ → ((𝑥 𝑏) ∖ 𝑏) = 𝑥)
9590, 94eqtrid 2776 . . . . . . . . . . . 12 ((𝑥 𝑏) = ∅ → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9680, 95syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9796ineq2d 4179 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = (𝐸𝑥))
9888, 97eqtr3id 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏) = (𝐸𝑥))
9998fveq2d 6844 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)) = (𝑀‘(𝐸𝑥)))
10087, 99oveq12d 7387 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
101 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
102101adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑂𝑉)
10335adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
10421adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → (𝑀‘∅) = 0)
105 carsgsiga.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
1061053adant1r 1178 . . . . . . . . . . . 12 (((𝜑𝑏𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
107 fiunelcarsg.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
108 ssfi 9114 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑏𝐴) → 𝑏 ∈ Fin)
109107, 108sylan 580 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ∈ Fin)
110 fiunelcarsg.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
111110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏𝐴) → 𝐴 ⊆ (toCaraSiga‘𝑀))
11277, 111sstrd 3954 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ⊆ (toCaraSiga‘𝑀))
113102, 103, 104, 106, 109, 112fiunelcarsg 34301 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → 𝑏 ∈ (toCaraSiga‘𝑀))
114101, 35elcarsg 34290 . . . . . . . . . . . 12 (𝜑 → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
115114adantr 480 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
116113, 115mpbid 232 . . . . . . . . . 10 ((𝜑𝑏𝐴) → ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒)))
117116simprd 495 . . . . . . . . 9 ((𝜑𝑏𝐴) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
118117adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
11938elpwincl1 32505 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ ( 𝑏𝑥)) ∈ 𝒫 𝑂)
120 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → 𝑒 = (𝐸 ∩ ( 𝑏𝑥)))
121120ineq1d 4178 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏))
122121fveq2d 6844 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)))
123120difeq1d 4084 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))
124123fveq2d 6844 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)))
125122, 124oveq12d 7387 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → ((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))))
126120fveq2d 6844 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀𝑒) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
127125, 126eqeq12d 2745 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) ↔ ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
128119, 127rspcdv 3577 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
129118, 128mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
130100, 129eqtr3d 2766 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
131130adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
13269, 131eqtr4id 2783 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
13343, 63, 1323eqtr4rd 2775 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
134133ex 412 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
1355, 10, 15, 20, 28, 134, 107findcard2d 9107 1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cuni 4867  Disj wdisj 5069   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  Fincfn 8895  0cc0 11046  +∞cpnf 11183  cle 11187   +𝑒 cxad 13048  [,]cicc 13287  Σ*cesum 34011  toCaraSigaccarsg 34286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125  ax-mulf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-ordt 17441  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-ps 18508  df-tsr 18509  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-cntz 19232  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-cring 20157  df-subrng 20467  df-subrg 20491  df-abv 20730  df-lmod 20801  df-scaf 20802  df-sra 21113  df-rgmod 21114  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-tmd 23993  df-tgp 23994  df-tsms 24048  df-trg 24081  df-xms 24242  df-ms 24243  df-tms 24244  df-nm 24504  df-ngp 24505  df-nrg 24507  df-nlm 24508  df-ii 24804  df-cncf 24805  df-limc 25801  df-dv 25802  df-log 26499  df-esum 34012  df-carsg 34287
This theorem is referenced by:  carsggect  34303  carsgclctunlem2  34304
  Copyright terms: Public domain W3C validator