Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem1 Structured version   Visualization version   GIF version

Theorem carsgclctunlem1 34299
Description: Lemma for carsgclctun 34303. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem1.1 (𝜑Disj 𝑦𝐴 𝑦)
carsgclctunlem1.2 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem1
Dummy variables 𝑎 𝑒 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4923 . . . . 5 (𝑎 = ∅ → 𝑎 = ∅)
21ineq2d 4228 . . . 4 (𝑎 = ∅ → (𝐸 𝑎) = (𝐸 ∅))
32fveq2d 6911 . . 3 (𝑎 = ∅ → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 ∅)))
4 esumeq1 34015 . . 3 (𝑎 = ∅ → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
53, 4eqeq12d 2751 . 2 (𝑎 = ∅ → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦))))
6 unieq 4923 . . . . 5 (𝑎 = 𝑏 𝑎 = 𝑏)
76ineq2d 4228 . . . 4 (𝑎 = 𝑏 → (𝐸 𝑎) = (𝐸 𝑏))
87fveq2d 6911 . . 3 (𝑎 = 𝑏 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝑏)))
9 esumeq1 34015 . . 3 (𝑎 = 𝑏 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
108, 9eqeq12d 2751 . 2 (𝑎 = 𝑏 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))))
11 unieq 4923 . . . . 5 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
1211ineq2d 4228 . . . 4 (𝑎 = (𝑏 ∪ {𝑥}) → (𝐸 𝑎) = (𝐸 (𝑏 ∪ {𝑥})))
1312fveq2d 6911 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))))
14 esumeq1 34015 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
1513, 14eqeq12d 2751 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
16 unieq 4923 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝐴)
1716ineq2d 4228 . . . 4 (𝑎 = 𝐴 → (𝐸 𝑎) = (𝐸 𝐴))
1817fveq2d 6911 . . 3 (𝑎 = 𝐴 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝐴)))
19 esumeq1 34015 . . 3 (𝑎 = 𝐴 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
2018, 19eqeq12d 2751 . 2 (𝑎 = 𝐴 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦))))
21 carsgsiga.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
22 uni0 4940 . . . . . 6 ∅ = ∅
2322ineq2i 4225 . . . . 5 (𝐸 ∅) = (𝐸 ∩ ∅)
24 in0 4401 . . . . 5 (𝐸 ∩ ∅) = ∅
2523, 24eqtri 2763 . . . 4 (𝐸 ∅) = ∅
2625fveq2i 6910 . . 3 (𝑀‘(𝐸 ∅)) = (𝑀‘∅)
27 esumnul 34029 . . 3 Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)) = 0
2821, 26, 273eqtr4g 2800 . 2 (𝜑 → (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
29 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
3029eqcomd 2741 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸 𝑏)))
31 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
3231ineq2d 4228 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝐸𝑦) = (𝐸𝑥))
3332fveq2d 6911 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
34 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑥 ∈ (𝐴𝑏))
35 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
37 carsgclctunlem1.2 . . . . . . . . . 10 (𝜑𝐸 ∈ 𝒫 𝑂)
3837adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝐸 ∈ 𝒫 𝑂)
3938elpwincl1 32553 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸𝑥) ∈ 𝒫 𝑂)
4036, 39ffvelcdmd 7105 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘(𝐸𝑥)) ∈ (0[,]+∞))
4133, 34, 40esumsn 34046 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4241adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4330, 42oveq12d 7449 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
44 nfv 1912 . . . . . 6 𝑦(𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏)))
45 nfcv 2903 . . . . . 6 𝑦𝑏
46 nfcv 2903 . . . . . 6 𝑦{𝑥}
47 vex 3482 . . . . . . 7 𝑏 ∈ V
4847a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
49 vsnex 5440 . . . . . . 7 {𝑥} ∈ V
5049a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → {𝑥} ∈ V)
5134eldifbd 3976 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ¬ 𝑥𝑏)
52 disjsn 4716 . . . . . . 7 ((𝑏 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑏)
5351, 52sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑥}) = ∅)
5435ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5537ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝐸 ∈ 𝒫 𝑂)
5655elpwincl1 32553 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝐸𝑦) ∈ 𝒫 𝑂)
5754, 56ffvelcdmd 7105 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
5835ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5937ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝐸 ∈ 𝒫 𝑂)
6059elpwincl1 32553 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝐸𝑦) ∈ 𝒫 𝑂)
6158, 60ffvelcdmd 7105 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
6244, 45, 46, 48, 50, 53, 57, 61esumsplit 34034 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
6362adantr 480 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
64 uniun 4935 . . . . . . . 8 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
65 unisnv 4932 . . . . . . . . 9 {𝑥} = 𝑥
6665uneq2i 4175 . . . . . . . 8 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
6764, 66eqtri 2763 . . . . . . 7 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
6867ineq2i 4225 . . . . . 6 (𝐸 (𝑏 ∪ {𝑥})) = (𝐸 ∩ ( 𝑏𝑥))
6968fveq2i 6910 . . . . 5 (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))
70 inass 4236 . . . . . . . . . 10 ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏))
71 indir 4292 . . . . . . . . . . . 12 (( 𝑏𝑥) ∩ 𝑏) = (( 𝑏 𝑏) ∪ (𝑥 𝑏))
72 inidm 4235 . . . . . . . . . . . . . . 15 ( 𝑏 𝑏) = 𝑏
7372a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 𝑏) = 𝑏)
74 incom 4217 . . . . . . . . . . . . . . 15 ( 𝑏𝑥) = (𝑥 𝑏)
75 carsgclctunlem1.1 . . . . . . . . . . . . . . . . 17 (𝜑Disj 𝑦𝐴 𝑦)
7675adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Disj 𝑦𝐴 𝑦)
77 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → 𝑏𝐴)
7877adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏𝐴)
7976, 78, 34disjuniel 32617 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏𝑥) = ∅)
8074, 79eqtr3id 2789 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑥 𝑏) = ∅)
8173, 80uneq12d 4179 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = ( 𝑏 ∪ ∅))
82 un0 4400 . . . . . . . . . . . . 13 ( 𝑏 ∪ ∅) = 𝑏
8381, 82eqtrdi 2791 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = 𝑏)
8471, 83eqtrid 2787 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∩ 𝑏) = 𝑏)
8584ineq2d 4228 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏)) = (𝐸 𝑏))
8670, 85eqtrid 2787 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 𝑏))
8786fveq2d 6911 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) = (𝑀‘(𝐸 𝑏)))
88 indif2 4287 . . . . . . . . . 10 (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)
89 uncom 4168 . . . . . . . . . . . . . 14 ( 𝑏𝑥) = (𝑥 𝑏)
9089difeq1i 4132 . . . . . . . . . . . . 13 (( 𝑏𝑥) ∖ 𝑏) = ((𝑥 𝑏) ∖ 𝑏)
91 difun2 4487 . . . . . . . . . . . . . 14 ((𝑥 𝑏) ∖ 𝑏) = (𝑥 𝑏)
92 disj3 4460 . . . . . . . . . . . . . . 15 ((𝑥 𝑏) = ∅ ↔ 𝑥 = (𝑥 𝑏))
9392biimpi 216 . . . . . . . . . . . . . 14 ((𝑥 𝑏) = ∅ → 𝑥 = (𝑥 𝑏))
9491, 93eqtr4id 2794 . . . . . . . . . . . . 13 ((𝑥 𝑏) = ∅ → ((𝑥 𝑏) ∖ 𝑏) = 𝑥)
9590, 94eqtrid 2787 . . . . . . . . . . . 12 ((𝑥 𝑏) = ∅ → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9680, 95syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9796ineq2d 4228 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = (𝐸𝑥))
9888, 97eqtr3id 2789 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏) = (𝐸𝑥))
9998fveq2d 6911 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)) = (𝑀‘(𝐸𝑥)))
10087, 99oveq12d 7449 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
101 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
102101adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑂𝑉)
10335adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
10421adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → (𝑀‘∅) = 0)
105 carsgsiga.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
1061053adant1r 1176 . . . . . . . . . . . 12 (((𝜑𝑏𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
107 fiunelcarsg.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
108 ssfi 9212 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑏𝐴) → 𝑏 ∈ Fin)
109107, 108sylan 580 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ∈ Fin)
110 fiunelcarsg.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
111110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏𝐴) → 𝐴 ⊆ (toCaraSiga‘𝑀))
11277, 111sstrd 4006 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ⊆ (toCaraSiga‘𝑀))
113102, 103, 104, 106, 109, 112fiunelcarsg 34298 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → 𝑏 ∈ (toCaraSiga‘𝑀))
114101, 35elcarsg 34287 . . . . . . . . . . . 12 (𝜑 → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
115114adantr 480 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
116113, 115mpbid 232 . . . . . . . . . 10 ((𝜑𝑏𝐴) → ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒)))
117116simprd 495 . . . . . . . . 9 ((𝜑𝑏𝐴) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
118117adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
11938elpwincl1 32553 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ ( 𝑏𝑥)) ∈ 𝒫 𝑂)
120 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → 𝑒 = (𝐸 ∩ ( 𝑏𝑥)))
121120ineq1d 4227 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏))
122121fveq2d 6911 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)))
123120difeq1d 4135 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))
124123fveq2d 6911 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)))
125122, 124oveq12d 7449 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → ((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))))
126120fveq2d 6911 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀𝑒) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
127125, 126eqeq12d 2751 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) ↔ ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
128119, 127rspcdv 3614 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
129118, 128mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
130100, 129eqtr3d 2777 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
131130adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
13269, 131eqtr4id 2794 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
13343, 63, 1323eqtr4rd 2786 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
134133ex 412 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
1355, 10, 15, 20, 28, 134, 107findcard2d 9205 1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912  Disj wdisj 5115   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  Fincfn 8984  0cc0 11153  +∞cpnf 11290  cle 11294   +𝑒 cxad 13150  [,]cicc 13387  Σ*cesum 34008  toCaraSigaccarsg 34283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-ordt 17548  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tmd 24096  df-tgp 24097  df-tsms 24151  df-trg 24184  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-ii 24917  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-esum 34009  df-carsg 34284
This theorem is referenced by:  carsggect  34300  carsgclctunlem2  34301
  Copyright terms: Public domain W3C validator