Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem1 Structured version   Visualization version   GIF version

Theorem carsgclctunlem1 31184
Description: Lemma for carsgclctun 31188. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem1.1 (𝜑Disj 𝑦𝐴 𝑦)
carsgclctunlem1.2 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem1
Dummy variables 𝑎 𝑒 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4755 . . . . 5 (𝑎 = ∅ → 𝑎 = ∅)
21ineq2d 4111 . . . 4 (𝑎 = ∅ → (𝐸 𝑎) = (𝐸 ∅))
32fveq2d 6545 . . 3 (𝑎 = ∅ → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 ∅)))
4 esumeq1 30902 . . 3 (𝑎 = ∅ → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
53, 4eqeq12d 2809 . 2 (𝑎 = ∅ → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦))))
6 unieq 4755 . . . . 5 (𝑎 = 𝑏 𝑎 = 𝑏)
76ineq2d 4111 . . . 4 (𝑎 = 𝑏 → (𝐸 𝑎) = (𝐸 𝑏))
87fveq2d 6545 . . 3 (𝑎 = 𝑏 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝑏)))
9 esumeq1 30902 . . 3 (𝑎 = 𝑏 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
108, 9eqeq12d 2809 . 2 (𝑎 = 𝑏 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))))
11 unieq 4755 . . . . 5 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
1211ineq2d 4111 . . . 4 (𝑎 = (𝑏 ∪ {𝑥}) → (𝐸 𝑎) = (𝐸 (𝑏 ∪ {𝑥})))
1312fveq2d 6545 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))))
14 esumeq1 30902 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
1513, 14eqeq12d 2809 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
16 unieq 4755 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝐴)
1716ineq2d 4111 . . . 4 (𝑎 = 𝐴 → (𝐸 𝑎) = (𝐸 𝐴))
1817fveq2d 6545 . . 3 (𝑎 = 𝐴 → (𝑀‘(𝐸 𝑎)) = (𝑀‘(𝐸 𝐴)))
19 esumeq1 30902 . . 3 (𝑎 = 𝐴 → Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
2018, 19eqeq12d 2809 . 2 (𝑎 = 𝐴 → ((𝑀‘(𝐸 𝑎)) = Σ*𝑦𝑎(𝑀‘(𝐸𝑦)) ↔ (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦))))
21 carsgsiga.1 . . 3 (𝜑 → (𝑀‘∅) = 0)
22 uni0 4774 . . . . . 6 ∅ = ∅
2322ineq2i 4108 . . . . 5 (𝐸 ∅) = (𝐸 ∩ ∅)
24 in0 4267 . . . . 5 (𝐸 ∩ ∅) = ∅
2523, 24eqtri 2818 . . . 4 (𝐸 ∅) = ∅
2625fveq2i 6544 . . 3 (𝑀‘(𝐸 ∅)) = (𝑀‘∅)
27 esumnul 30916 . . 3 Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)) = 0
2821, 26, 273eqtr4g 2855 . 2 (𝜑 → (𝑀‘(𝐸 ∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸𝑦)))
29 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)))
3029eqcomd 2800 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸 𝑏)))
31 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
3231ineq2d 4111 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝐸𝑦) = (𝐸𝑥))
3332fveq2d 6545 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 = 𝑥) → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
34 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑥 ∈ (𝐴𝑏))
35 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3635adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
37 carsgclctunlem1.2 . . . . . . . . . 10 (𝜑𝐸 ∈ 𝒫 𝑂)
3837adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝐸 ∈ 𝒫 𝑂)
3938elpwincl1 29967 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸𝑥) ∈ 𝒫 𝑂)
4036, 39ffvelrnd 6720 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘(𝐸𝑥)) ∈ (0[,]+∞))
4133, 34, 40esumsn 30933 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4241adantr 481 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝑥)))
4330, 42oveq12d 7037 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
44 nfv 1893 . . . . . 6 𝑦(𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏)))
45 nfcv 2948 . . . . . 6 𝑦𝑏
46 nfcv 2948 . . . . . 6 𝑦{𝑥}
47 vex 3439 . . . . . . 7 𝑏 ∈ V
4847a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
49 snex 5226 . . . . . . 7 {𝑥} ∈ V
5049a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → {𝑥} ∈ V)
5134eldifbd 3874 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ¬ 𝑥𝑏)
52 disjsn 4556 . . . . . . 7 ((𝑏 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑏)
5351, 52sylibr 235 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑥}) = ∅)
5435ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5537ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → 𝐸 ∈ 𝒫 𝑂)
5655elpwincl1 29967 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝐸𝑦) ∈ 𝒫 𝑂)
5754, 56ffvelrnd 6720 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦𝑏) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
5835ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5937ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝐸 ∈ 𝒫 𝑂)
6059elpwincl1 29967 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝐸𝑦) ∈ 𝒫 𝑂)
6158, 60ffvelrnd 6720 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝑀‘(𝐸𝑦)) ∈ (0[,]+∞))
6244, 45, 46, 48, 50, 53, 57, 61esumsplit 30921 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
6362adantr 481 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)) = (Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) +𝑒 Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸𝑦))))
64 inass 4118 . . . . . . . . . 10 ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏))
65 indir 4174 . . . . . . . . . . . 12 (( 𝑏𝑥) ∩ 𝑏) = (( 𝑏 𝑏) ∪ (𝑥 𝑏))
66 inidm 4117 . . . . . . . . . . . . . . 15 ( 𝑏 𝑏) = 𝑏
6766a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 𝑏) = 𝑏)
68 incom 4101 . . . . . . . . . . . . . . 15 ( 𝑏𝑥) = (𝑥 𝑏)
69 carsgclctunlem1.1 . . . . . . . . . . . . . . . . 17 (𝜑Disj 𝑦𝐴 𝑦)
7069adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → Disj 𝑦𝐴 𝑦)
71 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → 𝑏𝐴)
7271adantrr 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → 𝑏𝐴)
7370, 72, 34disjuniel 30029 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏𝑥) = ∅)
7468, 73syl5eqr 2844 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑥 𝑏) = ∅)
7567, 74uneq12d 4063 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = ( 𝑏 ∪ ∅))
76 un0 4266 . . . . . . . . . . . . 13 ( 𝑏 ∪ ∅) = 𝑏
7775, 76syl6eq 2846 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏 𝑏) ∪ (𝑥 𝑏)) = 𝑏)
7865, 77syl5eq 2842 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∩ 𝑏) = 𝑏)
7978ineq2d 4111 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∩ 𝑏)) = (𝐸 𝑏))
8064, 79syl5eq 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏) = (𝐸 𝑏))
8180fveq2d 6545 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) = (𝑀‘(𝐸 𝑏)))
82 indif2 4169 . . . . . . . . . 10 (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)
83 uncom 4052 . . . . . . . . . . . . . 14 ( 𝑏𝑥) = (𝑥 𝑏)
8483difeq1i 4018 . . . . . . . . . . . . 13 (( 𝑏𝑥) ∖ 𝑏) = ((𝑥 𝑏) ∖ 𝑏)
85 disj3 4319 . . . . . . . . . . . . . . 15 ((𝑥 𝑏) = ∅ ↔ 𝑥 = (𝑥 𝑏))
8685biimpi 217 . . . . . . . . . . . . . 14 ((𝑥 𝑏) = ∅ → 𝑥 = (𝑥 𝑏))
87 difun2 4345 . . . . . . . . . . . . . 14 ((𝑥 𝑏) ∖ 𝑏) = (𝑥 𝑏)
8886, 87syl6reqr 2849 . . . . . . . . . . . . 13 ((𝑥 𝑏) = ∅ → ((𝑥 𝑏) ∖ 𝑏) = 𝑥)
8984, 88syl5eq 2842 . . . . . . . . . . . 12 ((𝑥 𝑏) = ∅ → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9074, 89syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (( 𝑏𝑥) ∖ 𝑏) = 𝑥)
9190ineq2d 4111 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ (( 𝑏𝑥) ∖ 𝑏)) = (𝐸𝑥))
9282, 91syl5eqr 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏) = (𝐸𝑥))
9392fveq2d 6545 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)) = (𝑀‘(𝐸𝑥)))
9481, 93oveq12d 7037 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
95 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
9695adantr 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑂𝑉)
9735adantr 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9821adantr 481 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → (𝑀‘∅) = 0)
99 carsgsiga.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
100993adant1r 1170 . . . . . . . . . . . 12 (((𝜑𝑏𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
101 fiunelcarsg.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
102 ssfi 8587 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑏𝐴) → 𝑏 ∈ Fin)
103101, 102sylan 580 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ∈ Fin)
104 fiunelcarsg.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
105104adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑏𝐴) → 𝐴 ⊆ (toCaraSiga‘𝑀))
10671, 105sstrd 3901 . . . . . . . . . . . 12 ((𝜑𝑏𝐴) → 𝑏 ⊆ (toCaraSiga‘𝑀))
10796, 97, 98, 100, 103, 106fiunelcarsg 31183 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → 𝑏 ∈ (toCaraSiga‘𝑀))
10895, 35elcarsg 31172 . . . . . . . . . . . 12 (𝜑 → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
109108adantr 481 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → ( 𝑏 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))))
110107, 109mpbid 233 . . . . . . . . . 10 ((𝜑𝑏𝐴) → ( 𝑏𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒)))
111110simprd 496 . . . . . . . . 9 ((𝜑𝑏𝐴) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
112111adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒))
11338elpwincl1 29967 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (𝐸 ∩ ( 𝑏𝑥)) ∈ 𝒫 𝑂)
114 simpr 485 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → 𝑒 = (𝐸 ∩ ( 𝑏𝑥)))
115114ineq1d 4110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏))
116115fveq2d 6545 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)))
117114difeq1d 4021 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑒 𝑏) = ((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))
118117fveq2d 6545 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀‘(𝑒 𝑏)) = (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏)))
119116, 118oveq12d 7037 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → ((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))))
120114fveq2d 6545 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (𝑀𝑒) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
121119, 120eqeq12d 2809 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑒 = (𝐸 ∩ ( 𝑏𝑥))) → (((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) ↔ ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
122113, 121rspcdv 3560 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑏)) +𝑒 (𝑀‘(𝑒 𝑏))) = (𝑀𝑒) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))))
123112, 122mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∩ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ ( 𝑏𝑥)) ∖ 𝑏))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
12494, 123eqtr3d 2832 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
125124adantr 481 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥))))
126 uniun 4766 . . . . . . . 8 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
127 vex 3439 . . . . . . . . . 10 𝑥 ∈ V
128127unisn 4763 . . . . . . . . 9 {𝑥} = 𝑥
129128uneq2i 4059 . . . . . . . 8 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
130126, 129eqtri 2818 . . . . . . 7 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
131130ineq2i 4108 . . . . . 6 (𝐸 (𝑏 ∪ {𝑥})) = (𝐸 ∩ ( 𝑏𝑥))
132131fveq2i 6544 . . . . 5 (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = (𝑀‘(𝐸 ∩ ( 𝑏𝑥)))
133125, 132syl6reqr 2849 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = ((𝑀‘(𝐸 𝑏)) +𝑒 (𝑀‘(𝐸𝑥))))
13443, 63, 1333eqtr4rd 2841 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ (𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦))) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦)))
135134ex 413 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ((𝑀‘(𝐸 𝑏)) = Σ*𝑦𝑏(𝑀‘(𝐸𝑦)) → (𝑀‘(𝐸 (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸𝑦))))
1365, 10, 15, 20, 28, 135, 101findcard2d 8609 1 (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2080  wral 3104  Vcvv 3436  cdif 3858  cun 3859  cin 3860  wss 3861  c0 4213  𝒫 cpw 4455  {csn 4474   cuni 4747  Disj wdisj 4932   class class class wbr 4964  wf 6224  cfv 6228  (class class class)co 7019  ωcom 7439  cdom 8358  Fincfn 8360  0cc0 10386  +∞cpnf 10521  cle 10525   +𝑒 cxad 12355  [,]cicc 12591  Σ*cesum 30895  toCaraSigaccarsg 31168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-inf2 8953  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464  ax-addf 10465  ax-mulf 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-disj 4933  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-of 7270  df-om 7440  df-1st 7548  df-2nd 7549  df-supp 7685  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-2o 7957  df-oadd 7960  df-er 8142  df-map 8261  df-pm 8262  df-ixp 8314  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fsupp 8683  df-fi 8724  df-sup 8755  df-inf 8756  df-oi 8823  df-dju 9179  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-dec 11949  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-ordt 16603  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-ps 17639  df-tsr 17640  df-plusf 17680  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-cntz 18188  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-subrg 19223  df-abv 19278  df-lmod 19326  df-scaf 19327  df-sra 19634  df-rgmod 19635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-tmd 22364  df-tgp 22365  df-tsms 22418  df-trg 22451  df-xms 22613  df-ms 22614  df-tms 22615  df-nm 22875  df-ngp 22876  df-nrg 22878  df-nlm 22879  df-ii 23168  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-esum 30896  df-carsg 31169
This theorem is referenced by:  carsggect  31185  carsgclctunlem2  31186
  Copyright terms: Public domain W3C validator