Step | Hyp | Ref
| Expression |
1 | | unieq 4847 |
. . . . 5
⊢ (𝑎 = ∅ → ∪ 𝑎 =
∪ ∅) |
2 | 1 | ineq2d 4143 |
. . . 4
⊢ (𝑎 = ∅ → (𝐸 ∩ ∪ 𝑎) =
(𝐸 ∩ ∪ ∅)) |
3 | 2 | fveq2d 6760 |
. . 3
⊢ (𝑎 = ∅ → (𝑀‘(𝐸 ∩ ∪ 𝑎)) = (𝑀‘(𝐸 ∩ ∪
∅))) |
4 | | esumeq1 31902 |
. . 3
⊢ (𝑎 = ∅ →
Σ*𝑦 ∈
𝑎(𝑀‘(𝐸 ∩ 𝑦)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸 ∩ 𝑦))) |
5 | 3, 4 | eqeq12d 2754 |
. 2
⊢ (𝑎 = ∅ → ((𝑀‘(𝐸 ∩ ∪ 𝑎)) = Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) ↔ (𝑀‘(𝐸 ∩ ∪
∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸 ∩ 𝑦)))) |
6 | | unieq 4847 |
. . . . 5
⊢ (𝑎 = 𝑏 → ∪ 𝑎 = ∪
𝑏) |
7 | 6 | ineq2d 4143 |
. . . 4
⊢ (𝑎 = 𝑏 → (𝐸 ∩ ∪ 𝑎) = (𝐸 ∩ ∪ 𝑏)) |
8 | 7 | fveq2d 6760 |
. . 3
⊢ (𝑎 = 𝑏 → (𝑀‘(𝐸 ∩ ∪ 𝑎)) = (𝑀‘(𝐸 ∩ ∪ 𝑏))) |
9 | | esumeq1 31902 |
. . 3
⊢ (𝑎 = 𝑏 → Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) |
10 | 8, 9 | eqeq12d 2754 |
. 2
⊢ (𝑎 = 𝑏 → ((𝑀‘(𝐸 ∩ ∪ 𝑎)) = Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) ↔ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦)))) |
11 | | unieq 4847 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑥}) → ∪ 𝑎 = ∪
(𝑏 ∪ {𝑥})) |
12 | 11 | ineq2d 4143 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (𝐸 ∩ ∪ 𝑎) = (𝐸 ∩ ∪ (𝑏 ∪ {𝑥}))) |
13 | 12 | fveq2d 6760 |
. . 3
⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (𝑀‘(𝐸 ∩ ∪ 𝑎)) = (𝑀‘(𝐸 ∩ ∪ (𝑏 ∪ {𝑥})))) |
14 | | esumeq1 31902 |
. . 3
⊢ (𝑎 = (𝑏 ∪ {𝑥}) → Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸 ∩ 𝑦))) |
15 | 13, 14 | eqeq12d 2754 |
. 2
⊢ (𝑎 = (𝑏 ∪ {𝑥}) → ((𝑀‘(𝐸 ∩ ∪ 𝑎)) = Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) ↔ (𝑀‘(𝐸 ∩ ∪ (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸 ∩ 𝑦)))) |
16 | | unieq 4847 |
. . . . 5
⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪
𝐴) |
17 | 16 | ineq2d 4143 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝐸 ∩ ∪ 𝑎) = (𝐸 ∩ ∪ 𝐴)) |
18 | 17 | fveq2d 6760 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑀‘(𝐸 ∩ ∪ 𝑎)) = (𝑀‘(𝐸 ∩ ∪ 𝐴))) |
19 | | esumeq1 31902 |
. . 3
⊢ (𝑎 = 𝐴 → Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) = Σ*𝑦 ∈ 𝐴(𝑀‘(𝐸 ∩ 𝑦))) |
20 | 18, 19 | eqeq12d 2754 |
. 2
⊢ (𝑎 = 𝐴 → ((𝑀‘(𝐸 ∩ ∪ 𝑎)) = Σ*𝑦 ∈ 𝑎(𝑀‘(𝐸 ∩ 𝑦)) ↔ (𝑀‘(𝐸 ∩ ∪ 𝐴)) = Σ*𝑦 ∈ 𝐴(𝑀‘(𝐸 ∩ 𝑦)))) |
21 | | carsgsiga.1 |
. . 3
⊢ (𝜑 → (𝑀‘∅) = 0) |
22 | | uni0 4866 |
. . . . . 6
⊢ ∪ ∅ = ∅ |
23 | 22 | ineq2i 4140 |
. . . . 5
⊢ (𝐸 ∩ ∪ ∅) = (𝐸 ∩ ∅) |
24 | | in0 4322 |
. . . . 5
⊢ (𝐸 ∩ ∅) =
∅ |
25 | 23, 24 | eqtri 2766 |
. . . 4
⊢ (𝐸 ∩ ∪ ∅) = ∅ |
26 | 25 | fveq2i 6759 |
. . 3
⊢ (𝑀‘(𝐸 ∩ ∪
∅)) = (𝑀‘∅) |
27 | | esumnul 31916 |
. . 3
⊢
Σ*𝑦
∈ ∅(𝑀‘(𝐸 ∩ 𝑦)) = 0 |
28 | 21, 26, 27 | 3eqtr4g 2804 |
. 2
⊢ (𝜑 → (𝑀‘(𝐸 ∩ ∪
∅)) = Σ*𝑦 ∈ ∅(𝑀‘(𝐸 ∩ 𝑦))) |
29 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) |
30 | 29 | eqcomd 2744 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦)) = (𝑀‘(𝐸 ∩ ∪ 𝑏))) |
31 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
32 | 31 | ineq2d 4143 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 = 𝑥) → (𝐸 ∩ 𝑦) = (𝐸 ∩ 𝑥)) |
33 | 32 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 = 𝑥) → (𝑀‘(𝐸 ∩ 𝑦)) = (𝑀‘(𝐸 ∩ 𝑥))) |
34 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → 𝑥 ∈ (𝐴 ∖ 𝑏)) |
35 | | carsgval.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
37 | | carsgclctunlem1.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑂) |
38 | 37 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → 𝐸 ∈ 𝒫 𝑂) |
39 | 38 | elpwincl1 30775 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝐸 ∩ 𝑥) ∈ 𝒫 𝑂) |
40 | 36, 39 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝑀‘(𝐸 ∩ 𝑥)) ∈ (0[,]+∞)) |
41 | 33, 34, 40 | esumsn 31933 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸 ∩ 𝑦)) = (𝑀‘(𝐸 ∩ 𝑥))) |
42 | 41 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → Σ*𝑦 ∈ {𝑥} (𝑀‘(𝐸 ∩ 𝑦)) = (𝑀‘(𝐸 ∩ 𝑥))) |
43 | 30, 42 | oveq12d 7273 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → (Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦)) +𝑒
Σ*𝑦 ∈
{𝑥} (𝑀‘(𝐸 ∩ 𝑦))) = ((𝑀‘(𝐸 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝐸 ∩ 𝑥)))) |
44 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) |
45 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑦𝑏 |
46 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑦{𝑥} |
47 | | vex 3426 |
. . . . . . 7
⊢ 𝑏 ∈ V |
48 | 47 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → 𝑏 ∈ V) |
49 | | snex 5349 |
. . . . . . 7
⊢ {𝑥} ∈ V |
50 | 49 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → {𝑥} ∈ V) |
51 | 34 | eldifbd 3896 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ¬ 𝑥 ∈ 𝑏) |
52 | | disjsn 4644 |
. . . . . . 7
⊢ ((𝑏 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ 𝑏) |
53 | 51, 52 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝑏 ∩ {𝑥}) = ∅) |
54 | 35 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ 𝑏) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
55 | 37 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ 𝑏) → 𝐸 ∈ 𝒫 𝑂) |
56 | 55 | elpwincl1 30775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ 𝑏) → (𝐸 ∩ 𝑦) ∈ 𝒫 𝑂) |
57 | 54, 56 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ 𝑏) → (𝑀‘(𝐸 ∩ 𝑦)) ∈ (0[,]+∞)) |
58 | 35 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
59 | 37 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ {𝑥}) → 𝐸 ∈ 𝒫 𝑂) |
60 | 59 | elpwincl1 30775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝐸 ∩ 𝑦) ∈ 𝒫 𝑂) |
61 | 58, 60 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑦 ∈ {𝑥}) → (𝑀‘(𝐸 ∩ 𝑦)) ∈ (0[,]+∞)) |
62 | 44, 45, 46, 48, 50, 53, 57, 61 | esumsplit 31921 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸 ∩ 𝑦)) = (Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦)) +𝑒
Σ*𝑦 ∈
{𝑥} (𝑀‘(𝐸 ∩ 𝑦)))) |
63 | 62 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸 ∩ 𝑦)) = (Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦)) +𝑒
Σ*𝑦 ∈
{𝑥} (𝑀‘(𝐸 ∩ 𝑦)))) |
64 | | uniun 4861 |
. . . . . . . 8
⊢ ∪ (𝑏
∪ {𝑥}) = (∪ 𝑏
∪ ∪ {𝑥}) |
65 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
66 | 65 | unisn 4858 |
. . . . . . . . 9
⊢ ∪ {𝑥}
= 𝑥 |
67 | 66 | uneq2i 4090 |
. . . . . . . 8
⊢ (∪ 𝑏
∪ ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
68 | 64, 67 | eqtri 2766 |
. . . . . . 7
⊢ ∪ (𝑏
∪ {𝑥}) = (∪ 𝑏
∪ 𝑥) |
69 | 68 | ineq2i 4140 |
. . . . . 6
⊢ (𝐸 ∩ ∪ (𝑏
∪ {𝑥})) = (𝐸 ∩ (∪ 𝑏
∪ 𝑥)) |
70 | 69 | fveq2i 6759 |
. . . . 5
⊢ (𝑀‘(𝐸 ∩ ∪ (𝑏 ∪ {𝑥}))) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) |
71 | | inass 4150 |
. . . . . . . . . 10
⊢ ((𝐸 ∩ (∪ 𝑏
∪ 𝑥)) ∩ ∪ 𝑏) =
(𝐸 ∩ ((∪ 𝑏
∪ 𝑥) ∩ ∪ 𝑏)) |
72 | | indir 4206 |
. . . . . . . . . . . 12
⊢ ((∪ 𝑏
∪ 𝑥) ∩ ∪ 𝑏) =
((∪ 𝑏 ∩ ∪ 𝑏) ∪ (𝑥 ∩ ∪ 𝑏)) |
73 | | inidm 4149 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑏
∩ ∪ 𝑏) = ∪ 𝑏 |
74 | 73 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∪
𝑏 ∩ ∪ 𝑏) =
∪ 𝑏) |
75 | | incom 4131 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑏
∩ 𝑥) = (𝑥 ∩ ∪ 𝑏) |
76 | | carsgclctunlem1.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) |
77 | 76 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → Disj 𝑦 ∈ 𝐴 𝑦) |
78 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑏 ⊆ 𝐴) |
79 | 78 | adantrr 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → 𝑏 ⊆ 𝐴) |
80 | 77, 79, 34 | disjuniel 30837 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∪
𝑏 ∩ 𝑥) = ∅) |
81 | 75, 80 | eqtr3id 2793 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝑥 ∩ ∪ 𝑏) = ∅) |
82 | 74, 81 | uneq12d 4094 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((∪
𝑏 ∩ ∪ 𝑏)
∪ (𝑥 ∩ ∪ 𝑏))
= (∪ 𝑏 ∪ ∅)) |
83 | | un0 4321 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑏
∪ ∅) = ∪ 𝑏 |
84 | 82, 83 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((∪
𝑏 ∩ ∪ 𝑏)
∪ (𝑥 ∩ ∪ 𝑏))
= ∪ 𝑏) |
85 | 72, 84 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((∪
𝑏 ∪ 𝑥) ∩ ∪ 𝑏) = ∪
𝑏) |
86 | 85 | ineq2d 4143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝐸 ∩ ((∪ 𝑏 ∪ 𝑥) ∩ ∪ 𝑏)) = (𝐸 ∩ ∪ 𝑏)) |
87 | 71, 86 | syl5eq 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏) = (𝐸 ∩ ∪ 𝑏)) |
88 | 87 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) = (𝑀‘(𝐸 ∩ ∪ 𝑏))) |
89 | | indif2 4201 |
. . . . . . . . . 10
⊢ (𝐸 ∩ ((∪ 𝑏
∪ 𝑥) ∖ ∪ 𝑏))
= ((𝐸 ∩ (∪ 𝑏
∪ 𝑥)) ∖ ∪ 𝑏) |
90 | | uncom 4083 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑏
∪ 𝑥) = (𝑥 ∪ ∪ 𝑏) |
91 | 90 | difeq1i 4049 |
. . . . . . . . . . . . 13
⊢ ((∪ 𝑏
∪ 𝑥) ∖ ∪ 𝑏) =
((𝑥 ∪ ∪ 𝑏)
∖ ∪ 𝑏) |
92 | | difun2 4411 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∪ ∪ 𝑏)
∖ ∪ 𝑏) = (𝑥 ∖ ∪ 𝑏) |
93 | | disj3 4384 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ ∪ 𝑏) =
∅ ↔ 𝑥 = (𝑥 ∖ ∪ 𝑏)) |
94 | 93 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ ∪ 𝑏) =
∅ → 𝑥 = (𝑥 ∖ ∪ 𝑏)) |
95 | 92, 94 | eqtr4id 2798 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∩ ∪ 𝑏) =
∅ → ((𝑥 ∪
∪ 𝑏) ∖ ∪ 𝑏) = 𝑥) |
96 | 91, 95 | syl5eq 2791 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ ∪ 𝑏) =
∅ → ((∪ 𝑏 ∪ 𝑥) ∖ ∪ 𝑏) = 𝑥) |
97 | 81, 96 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((∪
𝑏 ∪ 𝑥) ∖ ∪ 𝑏) = 𝑥) |
98 | 97 | ineq2d 4143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝐸 ∩ ((∪ 𝑏 ∪ 𝑥) ∖ ∪ 𝑏)) = (𝐸 ∩ 𝑥)) |
99 | 89, 98 | eqtr3id 2793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏) = (𝐸 ∩ 𝑥)) |
100 | 99 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏)) = (𝑀‘(𝐸 ∩ 𝑥))) |
101 | 88, 100 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏))) = ((𝑀‘(𝐸 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝐸 ∩ 𝑥)))) |
102 | | carsgval.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
103 | 102 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑂 ∈ 𝑉) |
104 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
105 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → (𝑀‘∅) = 0) |
106 | | carsgsiga.2 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
107 | 106 | 3adant1r 1175 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ⊆ 𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
108 | | fiunelcarsg.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ Fin) |
109 | | ssfi 8918 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Fin ∧ 𝑏 ⊆ 𝐴) → 𝑏 ∈ Fin) |
110 | 108, 109 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑏 ∈ Fin) |
111 | | fiunelcarsg.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
112 | 111 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
113 | 78, 112 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → 𝑏 ⊆ (toCaraSiga‘𝑀)) |
114 | 103, 104,
105, 107, 110, 113 | fiunelcarsg 32183 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) |
115 | 102, 35 | elcarsg 32172 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∪ 𝑏
∈ (toCaraSiga‘𝑀)
↔ (∪ 𝑏 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒)))) |
116 | 115 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → (∪ 𝑏 ∈ (toCaraSiga‘𝑀) ↔ (∪ 𝑏
⊆ 𝑂 ∧
∀𝑒 ∈ 𝒫
𝑂((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒)))) |
117 | 114, 116 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → (∪ 𝑏 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒))) |
118 | 117 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ⊆ 𝐴) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒)) |
119 | 118 | adantrr 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒)) |
120 | 38 | elpwincl1 30775 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∈ 𝒫 𝑂) |
121 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) |
122 | 121 | ineq1d 4142 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → (𝑒 ∩ ∪ 𝑏) = ((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) |
123 | 122 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → (𝑀‘(𝑒 ∩ ∪ 𝑏)) = (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏))) |
124 | 121 | difeq1d 4052 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → (𝑒 ∖ ∪ 𝑏) = ((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏)) |
125 | 124 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → (𝑀‘(𝑒 ∖ ∪ 𝑏)) = (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏))) |
126 | 123, 125 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → ((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = ((𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏)))) |
127 | 121 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → (𝑀‘𝑒) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥)))) |
128 | 126, 127 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ 𝑒 = (𝐸 ∩ (∪ 𝑏 ∪ 𝑥))) → (((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒) ↔ ((𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏))) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥))))) |
129 | 120, 128 | rspcdv 3543 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝑒 ∖ ∪ 𝑏))) = (𝑀‘𝑒) → ((𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏))) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥))))) |
130 | 119, 129 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∩ ∪ 𝑏)) +𝑒 (𝑀‘((𝐸 ∩ (∪ 𝑏 ∪ 𝑥)) ∖ ∪ 𝑏))) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥)))) |
131 | 101, 130 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((𝑀‘(𝐸 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝐸 ∩ 𝑥))) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥)))) |
132 | 131 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → ((𝑀‘(𝐸 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝐸 ∩ 𝑥))) = (𝑀‘(𝐸 ∩ (∪ 𝑏 ∪ 𝑥)))) |
133 | 70, 132 | eqtr4id 2798 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → (𝑀‘(𝐸 ∩ ∪ (𝑏 ∪ {𝑥}))) = ((𝑀‘(𝐸 ∩ ∪ 𝑏)) +𝑒 (𝑀‘(𝐸 ∩ 𝑥)))) |
134 | 43, 63, 133 | 3eqtr4rd 2789 |
. . 3
⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ (𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦))) → (𝑀‘(𝐸 ∩ ∪ (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸 ∩ 𝑦))) |
135 | 134 | ex 412 |
. 2
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → ((𝑀‘(𝐸 ∩ ∪ 𝑏)) = Σ*𝑦 ∈ 𝑏(𝑀‘(𝐸 ∩ 𝑦)) → (𝑀‘(𝐸 ∩ ∪ (𝑏 ∪ {𝑥}))) = Σ*𝑦 ∈ (𝑏 ∪ {𝑥})(𝑀‘(𝐸 ∩ 𝑦)))) |
136 | 5, 10, 15, 20, 28, 135, 108 | findcard2d 8911 |
1
⊢ (𝜑 → (𝑀‘(𝐸 ∩ ∪ 𝐴)) = Σ*𝑦 ∈ 𝐴(𝑀‘(𝐸 ∩ 𝑦))) |