Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg Structured version   Visualization version   GIF version

Theorem difelcarsg 34295
Description: The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))

Proof of Theorem difelcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 difssd 4096 . . 3 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2 indif2 4240 . . . . . . . 8 (𝑒 ∩ (𝑂𝐴)) = ((𝑒𝑂) ∖ 𝐴)
3 elpwi 4566 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
43adantl 481 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
5 dfss2 3929 . . . . . . . . . 10 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
64, 5sylib 218 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
76difeq1d 4084 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∖ 𝐴) = (𝑒𝐴))
82, 7eqtrid 2776 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝑂𝐴)) = (𝑒𝐴))
98fveq2d 6844 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
10 difdif2 4255 . . . . . . . 8 (𝑒 ∖ (𝑂𝐴)) = ((𝑒𝑂) ∪ (𝑒𝐴))
11 ssdif0 4325 . . . . . . . . . . 11 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
124, 11sylib 218 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
1312uneq1d 4126 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (∅ ∪ (𝑒𝐴)))
14 uncom 4117 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (∅ ∪ (𝑒𝐴))
15 un0 4353 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (𝑒𝐴)
1614, 15eqtr3i 2754 . . . . . . . . 9 (∅ ∪ (𝑒𝐴)) = (𝑒𝐴)
1713, 16eqtrdi 2780 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (𝑒𝐴))
1810, 17eqtrid 2776 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝑂𝐴)) = (𝑒𝐴))
1918fveq2d 6844 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
209, 19oveq12d 7387 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
21 iccssxr 13369 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
22 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
2322adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
2524elpwdifcl 32506 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2623, 25ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
2721, 26sselid 3941 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2824elpwincl1 32505 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2923, 28ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
3021, 29sselid 3941 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
31 xaddcom 13178 . . . . . 6 (((𝑀‘(𝑒𝐴)) ∈ ℝ* ∧ (𝑀‘(𝑒𝐴)) ∈ ℝ*) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
3227, 30, 31syl2anc 584 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
33 difelcarsg.1 . . . . . . . 8 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
34 carsgval.1 . . . . . . . . 9 (𝜑𝑂𝑉)
3534, 22elcarsg 34290 . . . . . . . 8 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
3633, 35mpbid 232 . . . . . . 7 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
3736simprd 495 . . . . . 6 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3837r19.21bi 3227 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3920, 32, 383eqtrd 2768 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
4039ralrimiva 3125 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
411, 40jca 511 . 2 (𝜑 → ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒)))
4234, 22elcarsg 34290 . 2 (𝜑 → ((𝑂𝐴) ∈ (toCaraSiga‘𝑀) ↔ ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))))
4341, 42mpbird 257 1 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11046  +∞cpnf 11183  *cxr 11185   +𝑒 cxad 13048  [,]cicc 13287  toCaraSigaccarsg 34286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-xadd 13051  df-icc 13291  df-carsg 34287
This theorem is referenced by:  unelcarsg  34297  difelcarsg2  34298  fiunelcarsg  34301  carsgsiga  34307
  Copyright terms: Public domain W3C validator