Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg Structured version   Visualization version   GIF version

Theorem difelcarsg 31242
Description: The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))

Proof of Theorem difelcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 difssd 3993 . . 3 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2 indif2 4128 . . . . . . . 8 (𝑒 ∩ (𝑂𝐴)) = ((𝑒𝑂) ∖ 𝐴)
3 elpwi 4426 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
43adantl 474 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
5 df-ss 3837 . . . . . . . . . 10 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
64, 5sylib 210 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
76difeq1d 3982 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∖ 𝐴) = (𝑒𝐴))
82, 7syl5eq 2820 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝑂𝐴)) = (𝑒𝐴))
98fveq2d 6500 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
10 difdif2 4142 . . . . . . . 8 (𝑒 ∖ (𝑂𝐴)) = ((𝑒𝑂) ∪ (𝑒𝐴))
11 ssdif0 4203 . . . . . . . . . . 11 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
124, 11sylib 210 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
1312uneq1d 4021 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (∅ ∪ (𝑒𝐴)))
14 uncom 4012 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (∅ ∪ (𝑒𝐴))
15 un0 4224 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (𝑒𝐴)
1614, 15eqtr3i 2798 . . . . . . . . 9 (∅ ∪ (𝑒𝐴)) = (𝑒𝐴)
1713, 16syl6eq 2824 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (𝑒𝐴))
1810, 17syl5eq 2820 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝑂𝐴)) = (𝑒𝐴))
1918fveq2d 6500 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
209, 19oveq12d 6992 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
21 iccssxr 12633 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
22 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
2322adantr 473 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
24 simpr 477 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
2524elpwdifcl 30073 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2623, 25ffvelrnd 6675 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
2721, 26sseldi 3850 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2824elpwincl1 30072 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2923, 28ffvelrnd 6675 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
3021, 29sseldi 3850 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
31 xaddcom 12448 . . . . . 6 (((𝑀‘(𝑒𝐴)) ∈ ℝ* ∧ (𝑀‘(𝑒𝐴)) ∈ ℝ*) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
3227, 30, 31syl2anc 576 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
33 difelcarsg.1 . . . . . . . 8 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
34 carsgval.1 . . . . . . . . 9 (𝜑𝑂𝑉)
3534, 22elcarsg 31237 . . . . . . . 8 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
3633, 35mpbid 224 . . . . . . 7 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
3736simprd 488 . . . . . 6 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3837r19.21bi 3152 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3920, 32, 383eqtrd 2812 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
4039ralrimiva 3126 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
411, 40jca 504 . 2 (𝜑 → ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒)))
4234, 22elcarsg 31237 . 2 (𝜑 → ((𝑂𝐴) ∈ (toCaraSiga‘𝑀) ↔ ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))))
4341, 42mpbird 249 1 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wral 3082  cdif 3820  cun 3821  cin 3822  wss 3823  c0 4172  𝒫 cpw 4416  wf 6181  cfv 6185  (class class class)co 6974  0cc0 10333  +∞cpnf 10469  *cxr 10471   +𝑒 cxad 12320  [,]cicc 12555  toCaraSigaccarsg 31233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-xadd 12323  df-icc 12559  df-carsg 31234
This theorem is referenced by:  unelcarsg  31244  difelcarsg2  31245  fiunelcarsg  31248  carsgsiga  31254
  Copyright terms: Public domain W3C validator