Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg Structured version   Visualization version   GIF version

Theorem difelcarsg 31467
Description: The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))

Proof of Theorem difelcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 difssd 4106 . . 3 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2 indif2 4244 . . . . . . . 8 (𝑒 ∩ (𝑂𝐴)) = ((𝑒𝑂) ∖ 𝐴)
3 elpwi 4547 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
43adantl 482 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
5 df-ss 3949 . . . . . . . . . 10 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
64, 5sylib 219 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
76difeq1d 4095 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∖ 𝐴) = (𝑒𝐴))
82, 7syl5eq 2865 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝑂𝐴)) = (𝑒𝐴))
98fveq2d 6667 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
10 difdif2 4258 . . . . . . . 8 (𝑒 ∖ (𝑂𝐴)) = ((𝑒𝑂) ∪ (𝑒𝐴))
11 ssdif0 4320 . . . . . . . . . . 11 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
124, 11sylib 219 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
1312uneq1d 4135 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (∅ ∪ (𝑒𝐴)))
14 uncom 4126 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (∅ ∪ (𝑒𝐴))
15 un0 4341 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (𝑒𝐴)
1614, 15eqtr3i 2843 . . . . . . . . 9 (∅ ∪ (𝑒𝐴)) = (𝑒𝐴)
1713, 16syl6eq 2869 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (𝑒𝐴))
1810, 17syl5eq 2865 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝑂𝐴)) = (𝑒𝐴))
1918fveq2d 6667 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
209, 19oveq12d 7163 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
21 iccssxr 12807 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
22 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
2322adantr 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
24 simpr 485 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
2524elpwdifcl 30214 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2623, 25ffvelrnd 6844 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
2721, 26sseldi 3962 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2824elpwincl1 30213 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2923, 28ffvelrnd 6844 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
3021, 29sseldi 3962 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
31 xaddcom 12621 . . . . . 6 (((𝑀‘(𝑒𝐴)) ∈ ℝ* ∧ (𝑀‘(𝑒𝐴)) ∈ ℝ*) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
3227, 30, 31syl2anc 584 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
33 difelcarsg.1 . . . . . . . 8 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
34 carsgval.1 . . . . . . . . 9 (𝜑𝑂𝑉)
3534, 22elcarsg 31462 . . . . . . . 8 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
3633, 35mpbid 233 . . . . . . 7 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
3736simprd 496 . . . . . 6 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3837r19.21bi 3205 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3920, 32, 383eqtrd 2857 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
4039ralrimiva 3179 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
411, 40jca 512 . 2 (𝜑 → ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒)))
4234, 22elcarsg 31462 . 2 (𝜑 → ((𝑂𝐴) ∈ (toCaraSiga‘𝑀) ↔ ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))))
4341, 42mpbird 258 1 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  wf 6344  cfv 6348  (class class class)co 7145  0cc0 10525  +∞cpnf 10660  *cxr 10662   +𝑒 cxad 12493  [,]cicc 12729  toCaraSigaccarsg 31458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-xadd 12496  df-icc 12733  df-carsg 31459
This theorem is referenced by:  unelcarsg  31469  difelcarsg2  31470  fiunelcarsg  31473  carsgsiga  31479
  Copyright terms: Public domain W3C validator