Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg Structured version   Visualization version   GIF version

Theorem difelcarsg 34291
Description: The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))

Proof of Theorem difelcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 difssd 4146 . . 3 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2 indif2 4286 . . . . . . . 8 (𝑒 ∩ (𝑂𝐴)) = ((𝑒𝑂) ∖ 𝐴)
3 elpwi 4611 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
43adantl 481 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
5 dfss2 3980 . . . . . . . . . 10 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
64, 5sylib 218 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
76difeq1d 4134 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∖ 𝐴) = (𝑒𝐴))
82, 7eqtrid 2786 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝑂𝐴)) = (𝑒𝐴))
98fveq2d 6910 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
10 difdif2 4301 . . . . . . . 8 (𝑒 ∖ (𝑂𝐴)) = ((𝑒𝑂) ∪ (𝑒𝐴))
11 ssdif0 4371 . . . . . . . . . . 11 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
124, 11sylib 218 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
1312uneq1d 4176 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (∅ ∪ (𝑒𝐴)))
14 uncom 4167 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (∅ ∪ (𝑒𝐴))
15 un0 4399 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (𝑒𝐴)
1614, 15eqtr3i 2764 . . . . . . . . 9 (∅ ∪ (𝑒𝐴)) = (𝑒𝐴)
1713, 16eqtrdi 2790 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (𝑒𝐴))
1810, 17eqtrid 2786 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝑂𝐴)) = (𝑒𝐴))
1918fveq2d 6910 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
209, 19oveq12d 7448 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
21 iccssxr 13466 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
22 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
2322adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
2524elpwdifcl 32553 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2623, 25ffvelcdmd 7104 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
2721, 26sselid 3992 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2824elpwincl1 32552 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2923, 28ffvelcdmd 7104 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
3021, 29sselid 3992 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
31 xaddcom 13278 . . . . . 6 (((𝑀‘(𝑒𝐴)) ∈ ℝ* ∧ (𝑀‘(𝑒𝐴)) ∈ ℝ*) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
3227, 30, 31syl2anc 584 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
33 difelcarsg.1 . . . . . . . 8 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
34 carsgval.1 . . . . . . . . 9 (𝜑𝑂𝑉)
3534, 22elcarsg 34286 . . . . . . . 8 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
3633, 35mpbid 232 . . . . . . 7 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
3736simprd 495 . . . . . 6 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3837r19.21bi 3248 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3920, 32, 383eqtrd 2778 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
4039ralrimiva 3143 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
411, 40jca 511 . 2 (𝜑 → ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒)))
4234, 22elcarsg 34286 . 2 (𝜑 → ((𝑂𝐴) ∈ (toCaraSiga‘𝑀) ↔ ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))))
4341, 42mpbird 257 1 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604  wf 6558  cfv 6562  (class class class)co 7430  0cc0 11152  +∞cpnf 11289  *cxr 11291   +𝑒 cxad 13149  [,]cicc 13386  toCaraSigaccarsg 34282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-xadd 13152  df-icc 13390  df-carsg 34283
This theorem is referenced by:  unelcarsg  34293  difelcarsg2  34294  fiunelcarsg  34297  carsgsiga  34303
  Copyright terms: Public domain W3C validator