![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version |
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustuni | β’ (π β (UnifOnβπ) β βͺ π = (π Γ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 23710 | . 2 β’ (π β (UnifOnβπ) β (π Γ π) β π) | |
2 | ustssxp 23708 | . . . 4 β’ ((π β (UnifOnβπ) β§ π’ β π) β π’ β (π Γ π)) | |
3 | 2 | ralrimiva 3146 | . . 3 β’ (π β (UnifOnβπ) β βπ’ β π π’ β (π Γ π)) |
4 | pwssb 5104 | . . 3 β’ (π β π« (π Γ π) β βπ’ β π π’ β (π Γ π)) | |
5 | 3, 4 | sylibr 233 | . 2 β’ (π β (UnifOnβπ) β π β π« (π Γ π)) |
6 | elpwuni 5108 | . . 3 β’ ((π Γ π) β π β (π β π« (π Γ π) β βͺ π = (π Γ π))) | |
7 | 6 | biimpa 477 | . 2 β’ (((π Γ π) β π β§ π β π« (π Γ π)) β βͺ π = (π Γ π)) |
8 | 1, 5, 7 | syl2anc 584 | 1 β’ (π β (UnifOnβπ) β βͺ π = (π Γ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βwral 3061 β wss 3948 π« cpw 4602 βͺ cuni 4908 Γ cxp 5674 βcfv 6543 UnifOncust 23703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-ust 23704 |
This theorem is referenced by: tususs 23774 cnflduss 24872 |
Copyright terms: Public domain | W3C validator |