MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuni Structured version   Visualization version   GIF version

Theorem ustuni 22927
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustuni (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))

Proof of Theorem ustuni
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ustbasel 22907 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
2 ustssxp 22905 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → 𝑢 ⊆ (𝑋 × 𝑋))
32ralrimiva 3113 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢𝑈 𝑢 ⊆ (𝑋 × 𝑋))
4 pwssb 4988 . . 3 (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢𝑈 𝑢 ⊆ (𝑋 × 𝑋))
53, 4sylibr 237 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
6 elpwuni 4992 . . 3 ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ 𝑈 = (𝑋 × 𝑋)))
76biimpa 480 . 2 (((𝑋 × 𝑋) ∈ 𝑈𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → 𝑈 = (𝑋 × 𝑋))
81, 5, 7syl2anc 587 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3070  wss 3858  𝒫 cpw 4494   cuni 4798   × cxp 5522  cfv 6335  UnifOncust 22900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-res 5536  df-iota 6294  df-fun 6337  df-fv 6343  df-ust 22901
This theorem is referenced by:  tususs  22971  cnflduss  24056
  Copyright terms: Public domain W3C validator