MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuni Structured version   Visualization version   GIF version

Theorem ustuni 24235
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustuni (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))

Proof of Theorem ustuni
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ustbasel 24215 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
2 ustssxp 24213 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → 𝑢 ⊆ (𝑋 × 𝑋))
32ralrimiva 3146 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢𝑈 𝑢 ⊆ (𝑋 × 𝑋))
4 pwssb 5101 . . 3 (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢𝑈 𝑢 ⊆ (𝑋 × 𝑋))
53, 4sylibr 234 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
6 elpwuni 5105 . . 3 ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ 𝑈 = (𝑋 × 𝑋)))
76biimpa 476 . 2 (((𝑋 × 𝑋) ∈ 𝑈𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → 𝑈 = (𝑋 × 𝑋))
81, 5, 7syl2anc 584 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3061  wss 3951  𝒫 cpw 4600   cuni 4907   × cxp 5683  cfv 6561  UnifOncust 24208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ust 24209
This theorem is referenced by:  tususs  24279  cnflduss  25390
  Copyright terms: Public domain W3C validator