MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuni Structured version   Visualization version   GIF version

Theorem ustuni 24139
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustuni (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))

Proof of Theorem ustuni
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ustbasel 24120 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
2 ustssxp 24118 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → 𝑢 ⊆ (𝑋 × 𝑋))
32ralrimiva 3124 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢𝑈 𝑢 ⊆ (𝑋 × 𝑋))
4 pwssb 5049 . . 3 (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢𝑈 𝑢 ⊆ (𝑋 × 𝑋))
53, 4sylibr 234 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
6 elpwuni 5053 . . 3 ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ 𝑈 = (𝑋 × 𝑋)))
76biimpa 476 . 2 (((𝑋 × 𝑋) ∈ 𝑈𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → 𝑈 = (𝑋 × 𝑋))
81, 5, 7syl2anc 584 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wss 3902  𝒫 cpw 4550   cuni 4859   × cxp 5614  cfv 6481  UnifOncust 24113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ust 24114
This theorem is referenced by:  tususs  24182  cnflduss  25281
  Copyright terms: Public domain W3C validator