| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version | ||
| Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| ustuni | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbasel 24094 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 2 | ustssxp 24092 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → 𝑢 ⊆ (𝑋 × 𝑋)) | |
| 3 | 2 | ralrimiva 3125 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) |
| 4 | pwssb 5065 | . . 3 ⊢ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 6 | elpwuni 5069 | . . 3 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∪ 𝑈 = (𝑋 × 𝑋))) | |
| 7 | 6 | biimpa 476 | . 2 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → ∪ 𝑈 = (𝑋 × 𝑋)) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 × cxp 5636 ‘cfv 6511 UnifOncust 24087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ust 24088 |
| This theorem is referenced by: tususs 24157 cnflduss 25256 |
| Copyright terms: Public domain | W3C validator |