| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version | ||
| Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| ustuni | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbasel 24145 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 2 | ustssxp 24143 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → 𝑢 ⊆ (𝑋 × 𝑋)) | |
| 3 | 2 | ralrimiva 3132 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) |
| 4 | pwssb 5077 | . . 3 ⊢ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 6 | elpwuni 5081 | . . 3 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∪ 𝑈 = (𝑋 × 𝑋))) | |
| 7 | 6 | biimpa 476 | . 2 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → ∪ 𝑈 = (𝑋 × 𝑋)) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 × cxp 5652 ‘cfv 6531 UnifOncust 24138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-ust 24139 |
| This theorem is referenced by: tususs 24208 cnflduss 25308 |
| Copyright terms: Public domain | W3C validator |