Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version |
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustuni | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 22907 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
2 | ustssxp 22905 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → 𝑢 ⊆ (𝑋 × 𝑋)) | |
3 | 2 | ralrimiva 3113 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) |
4 | pwssb 4988 | . . 3 ⊢ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) | |
5 | 3, 4 | sylibr 237 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
6 | elpwuni 4992 | . . 3 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∪ 𝑈 = (𝑋 × 𝑋))) | |
7 | 6 | biimpa 480 | . 2 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → ∪ 𝑈 = (𝑋 × 𝑋)) |
8 | 1, 5, 7 | syl2anc 587 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3858 𝒫 cpw 4494 ∪ cuni 4798 × cxp 5522 ‘cfv 6335 UnifOncust 22900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-res 5536 df-iota 6294 df-fun 6337 df-fv 6343 df-ust 22901 |
This theorem is referenced by: tususs 22971 cnflduss 24056 |
Copyright terms: Public domain | W3C validator |