![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version |
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustuni | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 24231 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
2 | ustssxp 24229 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → 𝑢 ⊆ (𝑋 × 𝑋)) | |
3 | 2 | ralrimiva 3144 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) |
4 | pwssb 5106 | . . 3 ⊢ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) | |
5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
6 | elpwuni 5110 | . . 3 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∪ 𝑈 = (𝑋 × 𝑋))) | |
7 | 6 | biimpa 476 | . 2 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → ∪ 𝑈 = (𝑋 × 𝑋)) |
8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 × cxp 5687 ‘cfv 6563 UnifOncust 24224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 df-ust 24225 |
This theorem is referenced by: tususs 24295 cnflduss 25404 |
Copyright terms: Public domain | W3C validator |