|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version | ||
| Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| ustuni | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ustbasel 24215 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 2 | ustssxp 24213 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → 𝑢 ⊆ (𝑋 × 𝑋)) | |
| 3 | 2 | ralrimiva 3146 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) | 
| 4 | pwssb 5101 | . . 3 ⊢ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑢 ∈ 𝑈 𝑢 ⊆ (𝑋 × 𝑋)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) | 
| 6 | elpwuni 5105 | . . 3 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∪ 𝑈 = (𝑋 × 𝑋))) | |
| 7 | 6 | biimpa 476 | . 2 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → ∪ 𝑈 = (𝑋 × 𝑋)) | 
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 × cxp 5683 ‘cfv 6561 UnifOncust 24208 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-ust 24209 | 
| This theorem is referenced by: tususs 24279 cnflduss 25390 | 
| Copyright terms: Public domain | W3C validator |