![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version |
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustuni | β’ (π β (UnifOnβπ) β βͺ π = (π Γ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 24055 | . 2 β’ (π β (UnifOnβπ) β (π Γ π) β π) | |
2 | ustssxp 24053 | . . . 4 β’ ((π β (UnifOnβπ) β§ π’ β π) β π’ β (π Γ π)) | |
3 | 2 | ralrimiva 3138 | . . 3 β’ (π β (UnifOnβπ) β βπ’ β π π’ β (π Γ π)) |
4 | pwssb 5095 | . . 3 β’ (π β π« (π Γ π) β βπ’ β π π’ β (π Γ π)) | |
5 | 3, 4 | sylibr 233 | . 2 β’ (π β (UnifOnβπ) β π β π« (π Γ π)) |
6 | elpwuni 5099 | . . 3 β’ ((π Γ π) β π β (π β π« (π Γ π) β βͺ π = (π Γ π))) | |
7 | 6 | biimpa 476 | . 2 β’ (((π Γ π) β π β§ π β π« (π Γ π)) β βͺ π = (π Γ π)) |
8 | 1, 5, 7 | syl2anc 583 | 1 β’ (π β (UnifOnβπ) β βͺ π = (π Γ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βwral 3053 β wss 3941 π« cpw 4595 βͺ cuni 4900 Γ cxp 5665 βcfv 6534 UnifOncust 24048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6486 df-fun 6536 df-fv 6542 df-ust 24049 |
This theorem is referenced by: tususs 24119 cnflduss 25228 |
Copyright terms: Public domain | W3C validator |