![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustuni | Structured version Visualization version GIF version |
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustuni | β’ (π β (UnifOnβπ) β βͺ π = (π Γ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 24124 | . 2 β’ (π β (UnifOnβπ) β (π Γ π) β π) | |
2 | ustssxp 24122 | . . . 4 β’ ((π β (UnifOnβπ) β§ π’ β π) β π’ β (π Γ π)) | |
3 | 2 | ralrimiva 3143 | . . 3 β’ (π β (UnifOnβπ) β βπ’ β π π’ β (π Γ π)) |
4 | pwssb 5104 | . . 3 β’ (π β π« (π Γ π) β βπ’ β π π’ β (π Γ π)) | |
5 | 3, 4 | sylibr 233 | . 2 β’ (π β (UnifOnβπ) β π β π« (π Γ π)) |
6 | elpwuni 5108 | . . 3 β’ ((π Γ π) β π β (π β π« (π Γ π) β βͺ π = (π Γ π))) | |
7 | 6 | biimpa 476 | . 2 β’ (((π Γ π) β π β§ π β π« (π Γ π)) β βͺ π = (π Γ π)) |
8 | 1, 5, 7 | syl2anc 583 | 1 β’ (π β (UnifOnβπ) β βͺ π = (π Γ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 βwral 3058 β wss 3947 π« cpw 4603 βͺ cuni 4908 Γ cxp 5676 βcfv 6548 UnifOncust 24117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-ust 24118 |
This theorem is referenced by: tususs 24188 cnflduss 25297 |
Copyright terms: Public domain | W3C validator |