Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgon Structured version   Visualization version   GIF version

Theorem issgon 34159
Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016.) (Revised by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
issgon (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))

Proof of Theorem issgon
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6914 . . . 4 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3959 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
3 elex 3485 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
4 issiga 34148 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
5 elpwuni 5086 . . . . . . . 8 (𝑂𝑆 → (𝑆 ⊆ 𝒫 𝑂 𝑆 = 𝑂))
65biimpa 476 . . . . . . 7 ((𝑂𝑆𝑆 ⊆ 𝒫 𝑂) → 𝑆 = 𝑂)
7 ancom 460 . . . . . . 7 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) ↔ (𝑂𝑆𝑆 ⊆ 𝒫 𝑂))
8 eqcom 2743 . . . . . . 7 (𝑂 = 𝑆 𝑆 = 𝑂)
96, 7, 83imtr4i 292 . . . . . 6 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) → 𝑂 = 𝑆)
1093ad2antr1 1189 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 = 𝑆)
114, 10biimtrdi 253 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆))
123, 11mpcom 38 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆)
132, 12jca 511 . 2 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
14 elex 3485 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ V)
15 isrnsiga 34149 . . . . . . . 8 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1615simprbi 496 . . . . . . 7 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
17 elpwuni 5086 . . . . . . . . . . . . 13 (𝑜𝑆 → (𝑆 ⊆ 𝒫 𝑜 𝑆 = 𝑜))
1817biimpa 476 . . . . . . . . . . . 12 ((𝑜𝑆𝑆 ⊆ 𝒫 𝑜) → 𝑆 = 𝑜)
19 ancom 460 . . . . . . . . . . . 12 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) ↔ (𝑜𝑆𝑆 ⊆ 𝒫 𝑜))
20 eqcom 2743 . . . . . . . . . . . 12 (𝑜 = 𝑆 𝑆 = 𝑜)
2118, 19, 203imtr4i 292 . . . . . . . . . . 11 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) → 𝑜 = 𝑆)
22213ad2antr1 1189 . . . . . . . . . 10 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑜 = 𝑆)
23 pweq 4594 . . . . . . . . . . . 12 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
2423sseq2d 3996 . . . . . . . . . . 11 (𝑜 = 𝑆 → (𝑆 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑆))
25 eleq1 2823 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (𝑜𝑆 𝑆𝑆))
26 difeq1 4099 . . . . . . . . . . . . . 14 (𝑜 = 𝑆 → (𝑜𝑥) = ( 𝑆𝑥))
2726eleq1d 2820 . . . . . . . . . . . . 13 (𝑜 = 𝑆 → ((𝑜𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
2827ralbidv 3164 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
2925, 283anbi12d 1439 . . . . . . . . . . 11 (𝑜 = 𝑆 → ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3024, 29anbi12d 632 . . . . . . . . . 10 (𝑜 = 𝑆 → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3122, 30syl 17 . . . . . . . . 9 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3231ibi 267 . . . . . . . 8 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3332exlimiv 1930 . . . . . . 7 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3416, 33syl 17 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3534simprd 495 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3614, 35jca 511 . . . 4 (𝑆 ran sigAlgebra → (𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
37 eleq1 2823 . . . . . . . 8 (𝑂 = 𝑆 → (𝑂𝑆 𝑆𝑆))
38 difeq1 4099 . . . . . . . . . 10 (𝑂 = 𝑆 → (𝑂𝑥) = ( 𝑆𝑥))
3938eleq1d 2820 . . . . . . . . 9 (𝑂 = 𝑆 → ((𝑂𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
4039ralbidv 3164 . . . . . . . 8 (𝑂 = 𝑆 → (∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
4137, 403anbi12d 1439 . . . . . . 7 (𝑂 = 𝑆 → ((𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4241biimprd 248 . . . . . 6 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43 pwuni 4926 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
44 pweq 4594 . . . . . . 7 (𝑂 = 𝑆 → 𝒫 𝑂 = 𝒫 𝑆)
4543, 44sseqtrrid 4007 . . . . . 6 (𝑂 = 𝑆𝑆 ⊆ 𝒫 𝑂)
4642, 45jctild 525 . . . . 5 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
4746anim2d 612 . . . 4 (𝑂 = 𝑆 → ((𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
484biimpar 477 . . . 4 ((𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) → 𝑆 ∈ (sigAlgebra‘𝑂))
4936, 47, 48syl56 36 . . 3 (𝑂 = 𝑆 → (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘𝑂)))
5049impcom 407 . 2 ((𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆) → 𝑆 ∈ (sigAlgebra‘𝑂))
5113, 50impbii 209 1 (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3052  Vcvv 3464  cdif 3928  wss 3931  𝒫 cpw 4580   cuni 4888   class class class wbr 5124  ran crn 5660  cfv 6536  ωcom 7866  cdom 8962  sigAlgebracsiga 34144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-siga 34145
This theorem is referenced by:  sgon  34160  unisg  34179  sxsigon  34228  sxuni  34229  1stmbfm  34297  2ndmbfm  34298  mbfmvolf  34303
  Copyright terms: Public domain W3C validator