Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgon Structured version   Visualization version   GIF version

Theorem issgon 31442
 Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016.) (Revised by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
issgon (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))

Proof of Theorem issgon
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6691 . . . 4 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3950 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
3 elex 3499 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
4 issiga 31431 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
5 elpwuni 5014 . . . . . . . 8 (𝑂𝑆 → (𝑆 ⊆ 𝒫 𝑂 𝑆 = 𝑂))
65biimpa 480 . . . . . . 7 ((𝑂𝑆𝑆 ⊆ 𝒫 𝑂) → 𝑆 = 𝑂)
7 ancom 464 . . . . . . 7 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) ↔ (𝑂𝑆𝑆 ⊆ 𝒫 𝑂))
8 eqcom 2831 . . . . . . 7 (𝑂 = 𝑆 𝑆 = 𝑂)
96, 7, 83imtr4i 295 . . . . . 6 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) → 𝑂 = 𝑆)
1093ad2antr1 1185 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 = 𝑆)
114, 10syl6bi 256 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆))
123, 11mpcom 38 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆)
132, 12jca 515 . 2 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
14 elex 3499 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ V)
15 isrnsiga 31432 . . . . . . . 8 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1615simprbi 500 . . . . . . 7 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
17 elpwuni 5014 . . . . . . . . . . . . 13 (𝑜𝑆 → (𝑆 ⊆ 𝒫 𝑜 𝑆 = 𝑜))
1817biimpa 480 . . . . . . . . . . . 12 ((𝑜𝑆𝑆 ⊆ 𝒫 𝑜) → 𝑆 = 𝑜)
19 ancom 464 . . . . . . . . . . . 12 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) ↔ (𝑜𝑆𝑆 ⊆ 𝒫 𝑜))
20 eqcom 2831 . . . . . . . . . . . 12 (𝑜 = 𝑆 𝑆 = 𝑜)
2118, 19, 203imtr4i 295 . . . . . . . . . . 11 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) → 𝑜 = 𝑆)
22213ad2antr1 1185 . . . . . . . . . 10 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑜 = 𝑆)
23 pweq 4539 . . . . . . . . . . . 12 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
2423sseq2d 3986 . . . . . . . . . . 11 (𝑜 = 𝑆 → (𝑆 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑆))
25 eleq1 2903 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (𝑜𝑆 𝑆𝑆))
26 difeq1 4079 . . . . . . . . . . . . . 14 (𝑜 = 𝑆 → (𝑜𝑥) = ( 𝑆𝑥))
2726eleq1d 2900 . . . . . . . . . . . . 13 (𝑜 = 𝑆 → ((𝑜𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
2827ralbidv 3192 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
2925, 283anbi12d 1434 . . . . . . . . . . 11 (𝑜 = 𝑆 → ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3024, 29anbi12d 633 . . . . . . . . . 10 (𝑜 = 𝑆 → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3122, 30syl 17 . . . . . . . . 9 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3231ibi 270 . . . . . . . 8 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3332exlimiv 1932 . . . . . . 7 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3416, 33syl 17 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3534simprd 499 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3614, 35jca 515 . . . 4 (𝑆 ran sigAlgebra → (𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
37 eleq1 2903 . . . . . . . 8 (𝑂 = 𝑆 → (𝑂𝑆 𝑆𝑆))
38 difeq1 4079 . . . . . . . . . 10 (𝑂 = 𝑆 → (𝑂𝑥) = ( 𝑆𝑥))
3938eleq1d 2900 . . . . . . . . 9 (𝑂 = 𝑆 → ((𝑂𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
4039ralbidv 3192 . . . . . . . 8 (𝑂 = 𝑆 → (∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
4137, 403anbi12d 1434 . . . . . . 7 (𝑂 = 𝑆 → ((𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4241biimprd 251 . . . . . 6 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43 pwuni 4862 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
44 pweq 4539 . . . . . . 7 (𝑂 = 𝑆 → 𝒫 𝑂 = 𝒫 𝑆)
4543, 44sseqtrrid 4007 . . . . . 6 (𝑂 = 𝑆𝑆 ⊆ 𝒫 𝑂)
4642, 45jctild 529 . . . . 5 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
4746anim2d 614 . . . 4 (𝑂 = 𝑆 → ((𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
484biimpar 481 . . . 4 ((𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) → 𝑆 ∈ (sigAlgebra‘𝑂))
4936, 47, 48syl56 36 . . 3 (𝑂 = 𝑆 → (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘𝑂)))
5049impcom 411 . 2 ((𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆) → 𝑆 ∈ (sigAlgebra‘𝑂))
5113, 50impbii 212 1 (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2115  ∀wral 3133  Vcvv 3481   ∖ cdif 3917   ⊆ wss 3920  𝒫 cpw 4523  ∪ cuni 4825   class class class wbr 5053  ran crn 5544  ‘cfv 6344  ωcom 7575   ≼ cdom 8504  sigAlgebracsiga 31427 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-fv 6352  df-siga 31428 This theorem is referenced by:  sgon  31443  unisg  31462  sxsigon  31511  sxuni  31512  1stmbfm  31578  2ndmbfm  31579  mbfmvolf  31584
 Copyright terms: Public domain W3C validator