Step | Hyp | Ref
| Expression |
1 | | fvssunirn 6803 |
. . . 4
⊢
(sigAlgebra‘𝑂)
⊆ ∪ ran sigAlgebra |
2 | 1 | sseli 3917 |
. . 3
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran
sigAlgebra) |
3 | | elex 3450 |
. . . 4
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V) |
4 | | issiga 32080 |
. . . . 5
⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
5 | | elpwuni 5034 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑆 → (𝑆 ⊆ 𝒫 𝑂 ↔ ∪ 𝑆 = 𝑂)) |
6 | 5 | biimpa 477 |
. . . . . . 7
⊢ ((𝑂 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑂) → ∪ 𝑆 = 𝑂) |
7 | | ancom 461 |
. . . . . . 7
⊢ ((𝑆 ⊆ 𝒫 𝑂 ∧ 𝑂 ∈ 𝑆) ↔ (𝑂 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑂)) |
8 | | eqcom 2745 |
. . . . . . 7
⊢ (𝑂 = ∪
𝑆 ↔ ∪ 𝑆 =
𝑂) |
9 | 6, 7, 8 | 3imtr4i 292 |
. . . . . 6
⊢ ((𝑆 ⊆ 𝒫 𝑂 ∧ 𝑂 ∈ 𝑆) → 𝑂 = ∪ 𝑆) |
10 | 9 | 3ad2antr1 1187 |
. . . . 5
⊢ ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → 𝑂 = ∪
𝑆) |
11 | 4, 10 | syl6bi 252 |
. . . 4
⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = ∪ 𝑆)) |
12 | 3, 11 | mpcom 38 |
. . 3
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = ∪ 𝑆) |
13 | 2, 12 | jca 512 |
. 2
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑆 ∈ ∪ ran
sigAlgebra ∧ 𝑂 = ∪ 𝑆)) |
14 | | elex 3450 |
. . . . 5
⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ V) |
15 | | isrnsiga 32081 |
. . . . . . . 8
⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
16 | 15 | simprbi 497 |
. . . . . . 7
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
17 | | elpwuni 5034 |
. . . . . . . . . . . . 13
⊢ (𝑜 ∈ 𝑆 → (𝑆 ⊆ 𝒫 𝑜 ↔ ∪ 𝑆 = 𝑜)) |
18 | 17 | biimpa 477 |
. . . . . . . . . . . 12
⊢ ((𝑜 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑜) → ∪ 𝑆 = 𝑜) |
19 | | ancom 461 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ 𝑜 ∈ 𝑆) ↔ (𝑜 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑜)) |
20 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ (𝑜 = ∪
𝑆 ↔ ∪ 𝑆 =
𝑜) |
21 | 18, 19, 20 | 3imtr4i 292 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ 𝑜 ∈ 𝑆) → 𝑜 = ∪ 𝑆) |
22 | 21 | 3ad2antr1 1187 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → 𝑜 = ∪
𝑆) |
23 | | pweq 4549 |
. . . . . . . . . . . 12
⊢ (𝑜 = ∪
𝑆 → 𝒫 𝑜 = 𝒫 ∪ 𝑆) |
24 | 23 | sseq2d 3953 |
. . . . . . . . . . 11
⊢ (𝑜 = ∪
𝑆 → (𝑆 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 ∪ 𝑆)) |
25 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑜 = ∪
𝑆 → (𝑜 ∈ 𝑆 ↔ ∪ 𝑆 ∈ 𝑆)) |
26 | | difeq1 4050 |
. . . . . . . . . . . . . 14
⊢ (𝑜 = ∪
𝑆 → (𝑜 ∖ 𝑥) = (∪ 𝑆 ∖ 𝑥)) |
27 | 26 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑜 = ∪
𝑆 → ((𝑜 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝑥) ∈ 𝑆)) |
28 | 27 | ralbidv 3112 |
. . . . . . . . . . . 12
⊢ (𝑜 = ∪
𝑆 → (∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆)) |
29 | 25, 28 | 3anbi12d 1436 |
. . . . . . . . . . 11
⊢ (𝑜 = ∪
𝑆 → ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)) ↔ (∪ 𝑆
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 (∪
𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
30 | 24, 29 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑜 = ∪
𝑆 → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) ↔ (𝑆 ⊆ 𝒫 ∪ 𝑆
∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
31 | 22, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) ↔ (𝑆 ⊆ 𝒫 ∪ 𝑆
∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
32 | 31 | ibi 266 |
. . . . . . . 8
⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → (𝑆 ⊆ 𝒫 ∪ 𝑆
∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
33 | 32 | exlimiv 1933 |
. . . . . . 7
⊢
(∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → (𝑆 ⊆ 𝒫 ∪ 𝑆
∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
34 | 16, 33 | syl 17 |
. . . . . 6
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆
∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
35 | 34 | simprd 496 |
. . . . 5
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪
𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) |
36 | 14, 35 | jca 512 |
. . . 4
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ∈ V ∧ (∪ 𝑆
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 (∪
𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
37 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑂 = ∪
𝑆 → (𝑂 ∈ 𝑆 ↔ ∪ 𝑆 ∈ 𝑆)) |
38 | | difeq1 4050 |
. . . . . . . . . 10
⊢ (𝑂 = ∪
𝑆 → (𝑂 ∖ 𝑥) = (∪ 𝑆 ∖ 𝑥)) |
39 | 38 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑂 = ∪
𝑆 → ((𝑂 ∖ 𝑥) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝑥) ∈ 𝑆)) |
40 | 39 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑂 = ∪
𝑆 → (∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆)) |
41 | 37, 40 | 3anbi12d 1436 |
. . . . . . 7
⊢ (𝑂 = ∪
𝑆 → ((𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)) ↔ (∪ 𝑆
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 (∪
𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
42 | 41 | biimprd 247 |
. . . . . 6
⊢ (𝑂 = ∪
𝑆 → ((∪ 𝑆
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 (∪
𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)) → (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
43 | | pwuni 4878 |
. . . . . . 7
⊢ 𝑆 ⊆ 𝒫 ∪ 𝑆 |
44 | | pweq 4549 |
. . . . . . 7
⊢ (𝑂 = ∪
𝑆 → 𝒫 𝑂 = 𝒫 ∪ 𝑆) |
45 | 43, 44 | sseqtrrid 3974 |
. . . . . 6
⊢ (𝑂 = ∪
𝑆 → 𝑆 ⊆ 𝒫 𝑂) |
46 | 42, 45 | jctild 526 |
. . . . 5
⊢ (𝑂 = ∪
𝑆 → ((∪ 𝑆
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 (∪
𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)) → (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
47 | 46 | anim2d 612 |
. . . 4
⊢ (𝑂 = ∪
𝑆 → ((𝑆 ∈ V ∧ (∪ 𝑆
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 (∪
𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → (𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))))) |
48 | 4 | biimpar 478 |
. . . 4
⊢ ((𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) → 𝑆 ∈ (sigAlgebra‘𝑂)) |
49 | 36, 47, 48 | syl56 36 |
. . 3
⊢ (𝑂 = ∪
𝑆 → (𝑆 ∈ ∪ ran
sigAlgebra → 𝑆 ∈
(sigAlgebra‘𝑂))) |
50 | 49 | impcom 408 |
. 2
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑂 = ∪ 𝑆) → 𝑆 ∈ (sigAlgebra‘𝑂)) |
51 | 13, 50 | impbii 208 |
1
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ∈ ∪ ran
sigAlgebra ∧ 𝑂 = ∪ 𝑆)) |