Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgon Structured version   Visualization version   GIF version

Theorem issgon 34087
Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016.) (Revised by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
issgon (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))

Proof of Theorem issgon
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6953 . . . 4 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 4004 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
3 elex 3509 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
4 issiga 34076 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
5 elpwuni 5128 . . . . . . . 8 (𝑂𝑆 → (𝑆 ⊆ 𝒫 𝑂 𝑆 = 𝑂))
65biimpa 476 . . . . . . 7 ((𝑂𝑆𝑆 ⊆ 𝒫 𝑂) → 𝑆 = 𝑂)
7 ancom 460 . . . . . . 7 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) ↔ (𝑂𝑆𝑆 ⊆ 𝒫 𝑂))
8 eqcom 2747 . . . . . . 7 (𝑂 = 𝑆 𝑆 = 𝑂)
96, 7, 83imtr4i 292 . . . . . 6 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) → 𝑂 = 𝑆)
1093ad2antr1 1188 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 = 𝑆)
114, 10biimtrdi 253 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆))
123, 11mpcom 38 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆)
132, 12jca 511 . 2 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
14 elex 3509 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ V)
15 isrnsiga 34077 . . . . . . . 8 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1615simprbi 496 . . . . . . 7 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
17 elpwuni 5128 . . . . . . . . . . . . 13 (𝑜𝑆 → (𝑆 ⊆ 𝒫 𝑜 𝑆 = 𝑜))
1817biimpa 476 . . . . . . . . . . . 12 ((𝑜𝑆𝑆 ⊆ 𝒫 𝑜) → 𝑆 = 𝑜)
19 ancom 460 . . . . . . . . . . . 12 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) ↔ (𝑜𝑆𝑆 ⊆ 𝒫 𝑜))
20 eqcom 2747 . . . . . . . . . . . 12 (𝑜 = 𝑆 𝑆 = 𝑜)
2118, 19, 203imtr4i 292 . . . . . . . . . . 11 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) → 𝑜 = 𝑆)
22213ad2antr1 1188 . . . . . . . . . 10 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑜 = 𝑆)
23 pweq 4636 . . . . . . . . . . . 12 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
2423sseq2d 4041 . . . . . . . . . . 11 (𝑜 = 𝑆 → (𝑆 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑆))
25 eleq1 2832 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (𝑜𝑆 𝑆𝑆))
26 difeq1 4142 . . . . . . . . . . . . . 14 (𝑜 = 𝑆 → (𝑜𝑥) = ( 𝑆𝑥))
2726eleq1d 2829 . . . . . . . . . . . . 13 (𝑜 = 𝑆 → ((𝑜𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
2827ralbidv 3184 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
2925, 283anbi12d 1437 . . . . . . . . . . 11 (𝑜 = 𝑆 → ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3024, 29anbi12d 631 . . . . . . . . . 10 (𝑜 = 𝑆 → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3122, 30syl 17 . . . . . . . . 9 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3231ibi 267 . . . . . . . 8 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3332exlimiv 1929 . . . . . . 7 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3416, 33syl 17 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3534simprd 495 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3614, 35jca 511 . . . 4 (𝑆 ran sigAlgebra → (𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
37 eleq1 2832 . . . . . . . 8 (𝑂 = 𝑆 → (𝑂𝑆 𝑆𝑆))
38 difeq1 4142 . . . . . . . . . 10 (𝑂 = 𝑆 → (𝑂𝑥) = ( 𝑆𝑥))
3938eleq1d 2829 . . . . . . . . 9 (𝑂 = 𝑆 → ((𝑂𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
4039ralbidv 3184 . . . . . . . 8 (𝑂 = 𝑆 → (∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
4137, 403anbi12d 1437 . . . . . . 7 (𝑂 = 𝑆 → ((𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4241biimprd 248 . . . . . 6 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43 pwuni 4969 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
44 pweq 4636 . . . . . . 7 (𝑂 = 𝑆 → 𝒫 𝑂 = 𝒫 𝑆)
4543, 44sseqtrrid 4062 . . . . . 6 (𝑂 = 𝑆𝑆 ⊆ 𝒫 𝑂)
4642, 45jctild 525 . . . . 5 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
4746anim2d 611 . . . 4 (𝑂 = 𝑆 → ((𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
484biimpar 477 . . . 4 ((𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) → 𝑆 ∈ (sigAlgebra‘𝑂))
4936, 47, 48syl56 36 . . 3 (𝑂 = 𝑆 → (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘𝑂)))
5049impcom 407 . 2 ((𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆) → 𝑆 ∈ (sigAlgebra‘𝑂))
5113, 50impbii 209 1 (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ran crn 5701  cfv 6573  ωcom 7903  cdom 9001  sigAlgebracsiga 34072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-siga 34073
This theorem is referenced by:  sgon  34088  unisg  34107  sxsigon  34156  sxuni  34157  1stmbfm  34225  2ndmbfm  34226  mbfmvolf  34231
  Copyright terms: Public domain W3C validator