Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issgon Structured version   Visualization version   GIF version

Theorem issgon 31492
Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016.) (Revised by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
issgon (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))

Proof of Theorem issgon
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6674 . . . 4 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3911 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
3 elex 3459 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
4 issiga 31481 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
5 elpwuni 4990 . . . . . . . 8 (𝑂𝑆 → (𝑆 ⊆ 𝒫 𝑂 𝑆 = 𝑂))
65biimpa 480 . . . . . . 7 ((𝑂𝑆𝑆 ⊆ 𝒫 𝑂) → 𝑆 = 𝑂)
7 ancom 464 . . . . . . 7 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) ↔ (𝑂𝑆𝑆 ⊆ 𝒫 𝑂))
8 eqcom 2805 . . . . . . 7 (𝑂 = 𝑆 𝑆 = 𝑂)
96, 7, 83imtr4i 295 . . . . . 6 ((𝑆 ⊆ 𝒫 𝑂𝑂𝑆) → 𝑂 = 𝑆)
1093ad2antr1 1185 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 = 𝑆)
114, 10syl6bi 256 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆))
123, 11mpcom 38 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 = 𝑆)
132, 12jca 515 . 2 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
14 elex 3459 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ V)
15 isrnsiga 31482 . . . . . . . 8 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1615simprbi 500 . . . . . . 7 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
17 elpwuni 4990 . . . . . . . . . . . . 13 (𝑜𝑆 → (𝑆 ⊆ 𝒫 𝑜 𝑆 = 𝑜))
1817biimpa 480 . . . . . . . . . . . 12 ((𝑜𝑆𝑆 ⊆ 𝒫 𝑜) → 𝑆 = 𝑜)
19 ancom 464 . . . . . . . . . . . 12 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) ↔ (𝑜𝑆𝑆 ⊆ 𝒫 𝑜))
20 eqcom 2805 . . . . . . . . . . . 12 (𝑜 = 𝑆 𝑆 = 𝑜)
2118, 19, 203imtr4i 295 . . . . . . . . . . 11 ((𝑆 ⊆ 𝒫 𝑜𝑜𝑆) → 𝑜 = 𝑆)
22213ad2antr1 1185 . . . . . . . . . 10 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑜 = 𝑆)
23 pweq 4513 . . . . . . . . . . . 12 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
2423sseq2d 3947 . . . . . . . . . . 11 (𝑜 = 𝑆 → (𝑆 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑆))
25 eleq1 2877 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (𝑜𝑆 𝑆𝑆))
26 difeq1 4043 . . . . . . . . . . . . . 14 (𝑜 = 𝑆 → (𝑜𝑥) = ( 𝑆𝑥))
2726eleq1d 2874 . . . . . . . . . . . . 13 (𝑜 = 𝑆 → ((𝑜𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
2827ralbidv 3162 . . . . . . . . . . . 12 (𝑜 = 𝑆 → (∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
2925, 283anbi12d 1434 . . . . . . . . . . 11 (𝑜 = 𝑆 → ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3024, 29anbi12d 633 . . . . . . . . . 10 (𝑜 = 𝑆 → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3122, 30syl 17 . . . . . . . . 9 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3231ibi 270 . . . . . . . 8 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3332exlimiv 1931 . . . . . . 7 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3416, 33syl 17 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3534simprd 499 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3614, 35jca 515 . . . 4 (𝑆 ran sigAlgebra → (𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
37 eleq1 2877 . . . . . . . 8 (𝑂 = 𝑆 → (𝑂𝑆 𝑆𝑆))
38 difeq1 4043 . . . . . . . . . 10 (𝑂 = 𝑆 → (𝑂𝑥) = ( 𝑆𝑥))
3938eleq1d 2874 . . . . . . . . 9 (𝑂 = 𝑆 → ((𝑂𝑥) ∈ 𝑆 ↔ ( 𝑆𝑥) ∈ 𝑆))
4039ralbidv 3162 . . . . . . . 8 (𝑂 = 𝑆 → (∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ↔ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆))
4137, 403anbi12d 1434 . . . . . . 7 (𝑂 = 𝑆 → ((𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) ↔ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4241biimprd 251 . . . . . 6 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43 pwuni 4837 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
44 pweq 4513 . . . . . . 7 (𝑂 = 𝑆 → 𝒫 𝑂 = 𝒫 𝑆)
4543, 44sseqtrrid 3968 . . . . . 6 (𝑂 = 𝑆𝑆 ⊆ 𝒫 𝑂)
4642, 45jctild 529 . . . . 5 (𝑂 = 𝑆 → (( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
4746anim2d 614 . . . 4 (𝑂 = 𝑆 → ((𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
484biimpar 481 . . . 4 ((𝑆 ∈ V ∧ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) → 𝑆 ∈ (sigAlgebra‘𝑂))
4936, 47, 48syl56 36 . . 3 (𝑂 = 𝑆 → (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘𝑂)))
5049impcom 411 . 2 ((𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆) → 𝑆 ∈ (sigAlgebra‘𝑂))
5113, 50impbii 212 1 (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3106  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  ran crn 5520  cfv 6324  ωcom 7560  cdom 8490  sigAlgebracsiga 31477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-siga 31478
This theorem is referenced by:  sgon  31493  unisg  31512  sxsigon  31561  sxuni  31562  1stmbfm  31628  2ndmbfm  31629  mbfmvolf  31634
  Copyright terms: Public domain W3C validator