Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2base Structured version   Visualization version   GIF version

Theorem br2base 34277
Description: The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
br2base ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Distinct variable group:   𝑥,𝑦

Proof of Theorem br2base
StepHypRef Expression
1 brsigasspwrn 34193 . . . . . . . 8 𝔅 ⊆ 𝒫 ℝ
21sseli 3930 . . . . . . 7 (𝑥 ∈ 𝔅𝑥 ∈ 𝒫 ℝ)
32elpwid 4559 . . . . . 6 (𝑥 ∈ 𝔅𝑥 ⊆ ℝ)
41sseli 3930 . . . . . . 7 (𝑦 ∈ 𝔅𝑦 ∈ 𝒫 ℝ)
54elpwid 4559 . . . . . 6 (𝑦 ∈ 𝔅𝑦 ⊆ ℝ)
6 xpss12 5631 . . . . . 6 ((𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
73, 5, 6syl2an 596 . . . . 5 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
8 vex 3440 . . . . . . 7 𝑥 ∈ V
9 vex 3440 . . . . . . 7 𝑦 ∈ V
108, 9xpex 7686 . . . . . 6 (𝑥 × 𝑦) ∈ V
1110elpw 4554 . . . . 5 ((𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) ↔ (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
127, 11sylibr 234 . . . 4 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ))
1312rgen2 3172 . . 3 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ)
14 eqid 2731 . . . 4 (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
1514rnmposs 32651 . . 3 (∀𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) → ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ))
1613, 15ax-mp 5 . 2 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ)
17 unibrsiga 34194 . . . . . 6 𝔅 = ℝ
18 brsigarn 34192 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
19 elrnsiga 34134 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
20 unielsiga 34136 . . . . . . 7 (𝔅 ran sigAlgebra → 𝔅 ∈ 𝔅)
2118, 19, 20mp2b 10 . . . . . 6 𝔅 ∈ 𝔅
2217, 21eqeltrri 2828 . . . . 5 ℝ ∈ 𝔅
23 eqid 2731 . . . . 5 (ℝ × ℝ) = (ℝ × ℝ)
24 xpeq1 5630 . . . . . . 7 (𝑥 = ℝ → (𝑥 × 𝑦) = (ℝ × 𝑦))
2524eqeq2d 2742 . . . . . 6 (𝑥 = ℝ → ((ℝ × ℝ) = (𝑥 × 𝑦) ↔ (ℝ × ℝ) = (ℝ × 𝑦)))
26 xpeq2 5637 . . . . . . 7 (𝑦 = ℝ → (ℝ × 𝑦) = (ℝ × ℝ))
2726eqeq2d 2742 . . . . . 6 (𝑦 = ℝ → ((ℝ × ℝ) = (ℝ × 𝑦) ↔ (ℝ × ℝ) = (ℝ × ℝ)))
2825, 27rspc2ev 3590 . . . . 5 ((ℝ ∈ 𝔅 ∧ ℝ ∈ 𝔅 ∧ (ℝ × ℝ) = (ℝ × ℝ)) → ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
2922, 22, 23, 28mp3an 1463 . . . 4 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦)
3014, 10elrnmpo 7482 . . . 4 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
3129, 30mpbir 231 . . 3 (ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
32 elpwuni 5053 . . 3 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) → (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)))
3331, 32ax-mp 5 . 2 (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ))
3416, 33mpbi 230 1 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902  𝒫 cpw 4550   cuni 4859   × cxp 5614  ran crn 5617  cfv 6481  cmpo 7348  cr 11002  sigAlgebracsiga 34116  𝔅cbrsiga 34189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-ioo 13246  df-topgen 17344  df-top 22807  df-bases 22859  df-siga 34117  df-sigagen 34147  df-brsiga 34190
This theorem is referenced by:  sxbrsigalem5  34296  sxbrsiga  34298
  Copyright terms: Public domain W3C validator