Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2base Structured version   Visualization version   GIF version

Theorem br2base 33263
Description: The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
br2base ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Distinct variable group:   𝑥,𝑦

Proof of Theorem br2base
StepHypRef Expression
1 brsigasspwrn 33178 . . . . . . . 8 𝔅 ⊆ 𝒫 ℝ
21sseli 3978 . . . . . . 7 (𝑥 ∈ 𝔅𝑥 ∈ 𝒫 ℝ)
32elpwid 4611 . . . . . 6 (𝑥 ∈ 𝔅𝑥 ⊆ ℝ)
41sseli 3978 . . . . . . 7 (𝑦 ∈ 𝔅𝑦 ∈ 𝒫 ℝ)
54elpwid 4611 . . . . . 6 (𝑦 ∈ 𝔅𝑦 ⊆ ℝ)
6 xpss12 5691 . . . . . 6 ((𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
73, 5, 6syl2an 596 . . . . 5 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
8 vex 3478 . . . . . . 7 𝑥 ∈ V
9 vex 3478 . . . . . . 7 𝑦 ∈ V
108, 9xpex 7739 . . . . . 6 (𝑥 × 𝑦) ∈ V
1110elpw 4606 . . . . 5 ((𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) ↔ (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
127, 11sylibr 233 . . . 4 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ))
1312rgen2 3197 . . 3 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ)
14 eqid 2732 . . . 4 (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
1514rnmposs 31894 . . 3 (∀𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) → ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ))
1613, 15ax-mp 5 . 2 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ)
17 unibrsiga 33179 . . . . . 6 𝔅 = ℝ
18 brsigarn 33177 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
19 elrnsiga 33119 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
20 unielsiga 33121 . . . . . . 7 (𝔅 ran sigAlgebra → 𝔅 ∈ 𝔅)
2118, 19, 20mp2b 10 . . . . . 6 𝔅 ∈ 𝔅
2217, 21eqeltrri 2830 . . . . 5 ℝ ∈ 𝔅
23 eqid 2732 . . . . 5 (ℝ × ℝ) = (ℝ × ℝ)
24 xpeq1 5690 . . . . . . 7 (𝑥 = ℝ → (𝑥 × 𝑦) = (ℝ × 𝑦))
2524eqeq2d 2743 . . . . . 6 (𝑥 = ℝ → ((ℝ × ℝ) = (𝑥 × 𝑦) ↔ (ℝ × ℝ) = (ℝ × 𝑦)))
26 xpeq2 5697 . . . . . . 7 (𝑦 = ℝ → (ℝ × 𝑦) = (ℝ × ℝ))
2726eqeq2d 2743 . . . . . 6 (𝑦 = ℝ → ((ℝ × ℝ) = (ℝ × 𝑦) ↔ (ℝ × ℝ) = (ℝ × ℝ)))
2825, 27rspc2ev 3624 . . . . 5 ((ℝ ∈ 𝔅 ∧ ℝ ∈ 𝔅 ∧ (ℝ × ℝ) = (ℝ × ℝ)) → ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
2922, 22, 23, 28mp3an 1461 . . . 4 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦)
3014, 10elrnmpo 7544 . . . 4 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
3129, 30mpbir 230 . . 3 (ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
32 elpwuni 5108 . . 3 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) → (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)))
3331, 32ax-mp 5 . 2 (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ))
3416, 33mpbi 229 1 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948  𝒫 cpw 4602   cuni 4908   × cxp 5674  ran crn 5677  cfv 6543  cmpo 7410  cr 11108  sigAlgebracsiga 33101  𝔅cbrsiga 33174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ioo 13327  df-topgen 17388  df-top 22395  df-bases 22448  df-siga 33102  df-sigagen 33132  df-brsiga 33175
This theorem is referenced by:  sxbrsigalem5  33282  sxbrsiga  33284
  Copyright terms: Public domain W3C validator