Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2base Structured version   Visualization version   GIF version

Theorem br2base 34209
Description: The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
br2base ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Distinct variable group:   𝑥,𝑦

Proof of Theorem br2base
StepHypRef Expression
1 brsigasspwrn 34124 . . . . . . . 8 𝔅 ⊆ 𝒫 ℝ
21sseli 3952 . . . . . . 7 (𝑥 ∈ 𝔅𝑥 ∈ 𝒫 ℝ)
32elpwid 4582 . . . . . 6 (𝑥 ∈ 𝔅𝑥 ⊆ ℝ)
41sseli 3952 . . . . . . 7 (𝑦 ∈ 𝔅𝑦 ∈ 𝒫 ℝ)
54elpwid 4582 . . . . . 6 (𝑦 ∈ 𝔅𝑦 ⊆ ℝ)
6 xpss12 5666 . . . . . 6 ((𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
73, 5, 6syl2an 596 . . . . 5 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
8 vex 3461 . . . . . . 7 𝑥 ∈ V
9 vex 3461 . . . . . . 7 𝑦 ∈ V
108, 9xpex 7741 . . . . . 6 (𝑥 × 𝑦) ∈ V
1110elpw 4577 . . . . 5 ((𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) ↔ (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
127, 11sylibr 234 . . . 4 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ))
1312rgen2 3182 . . 3 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ)
14 eqid 2734 . . . 4 (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
1514rnmposs 32585 . . 3 (∀𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) → ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ))
1613, 15ax-mp 5 . 2 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ)
17 unibrsiga 34125 . . . . . 6 𝔅 = ℝ
18 brsigarn 34123 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
19 elrnsiga 34065 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
20 unielsiga 34067 . . . . . . 7 (𝔅 ran sigAlgebra → 𝔅 ∈ 𝔅)
2118, 19, 20mp2b 10 . . . . . 6 𝔅 ∈ 𝔅
2217, 21eqeltrri 2830 . . . . 5 ℝ ∈ 𝔅
23 eqid 2734 . . . . 5 (ℝ × ℝ) = (ℝ × ℝ)
24 xpeq1 5665 . . . . . . 7 (𝑥 = ℝ → (𝑥 × 𝑦) = (ℝ × 𝑦))
2524eqeq2d 2745 . . . . . 6 (𝑥 = ℝ → ((ℝ × ℝ) = (𝑥 × 𝑦) ↔ (ℝ × ℝ) = (ℝ × 𝑦)))
26 xpeq2 5672 . . . . . . 7 (𝑦 = ℝ → (ℝ × 𝑦) = (ℝ × ℝ))
2726eqeq2d 2745 . . . . . 6 (𝑦 = ℝ → ((ℝ × ℝ) = (ℝ × 𝑦) ↔ (ℝ × ℝ) = (ℝ × ℝ)))
2825, 27rspc2ev 3612 . . . . 5 ((ℝ ∈ 𝔅 ∧ ℝ ∈ 𝔅 ∧ (ℝ × ℝ) = (ℝ × ℝ)) → ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
2922, 22, 23, 28mp3an 1462 . . . 4 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦)
3014, 10elrnmpo 7537 . . . 4 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
3129, 30mpbir 231 . . 3 (ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
32 elpwuni 5078 . . 3 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) → (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)))
3331, 32ax-mp 5 . 2 (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ))
3416, 33mpbi 230 1 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3924  𝒫 cpw 4573   cuni 4880   × cxp 5649  ran crn 5652  cfv 6527  cmpo 7401  cr 11120  sigAlgebracsiga 34047  𝔅cbrsiga 34120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-pre-lttri 11195  ax-pre-lttrn 11196
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-po 5558  df-so 5559  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-ioo 13357  df-topgen 17442  df-top 22817  df-bases 22869  df-siga 34048  df-sigagen 34078  df-brsiga 34121
This theorem is referenced by:  sxbrsigalem5  34228  sxbrsiga  34230
  Copyright terms: Public domain W3C validator