Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2base Structured version   Visualization version   GIF version

Theorem br2base 32933
Description: The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
br2base ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Distinct variable group:   𝑥,𝑦

Proof of Theorem br2base
StepHypRef Expression
1 brsigasspwrn 32848 . . . . . . . 8 𝔅 ⊆ 𝒫 ℝ
21sseli 3944 . . . . . . 7 (𝑥 ∈ 𝔅𝑥 ∈ 𝒫 ℝ)
32elpwid 4573 . . . . . 6 (𝑥 ∈ 𝔅𝑥 ⊆ ℝ)
41sseli 3944 . . . . . . 7 (𝑦 ∈ 𝔅𝑦 ∈ 𝒫 ℝ)
54elpwid 4573 . . . . . 6 (𝑦 ∈ 𝔅𝑦 ⊆ ℝ)
6 xpss12 5652 . . . . . 6 ((𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
73, 5, 6syl2an 597 . . . . 5 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
8 vex 3451 . . . . . . 7 𝑥 ∈ V
9 vex 3451 . . . . . . 7 𝑦 ∈ V
108, 9xpex 7691 . . . . . 6 (𝑥 × 𝑦) ∈ V
1110elpw 4568 . . . . 5 ((𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) ↔ (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
127, 11sylibr 233 . . . 4 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ))
1312rgen2 3191 . . 3 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ)
14 eqid 2733 . . . 4 (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
1514rnmposs 31643 . . 3 (∀𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) → ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ))
1613, 15ax-mp 5 . 2 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ)
17 unibrsiga 32849 . . . . . 6 𝔅 = ℝ
18 brsigarn 32847 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
19 elrnsiga 32789 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
20 unielsiga 32791 . . . . . . 7 (𝔅 ran sigAlgebra → 𝔅 ∈ 𝔅)
2118, 19, 20mp2b 10 . . . . . 6 𝔅 ∈ 𝔅
2217, 21eqeltrri 2831 . . . . 5 ℝ ∈ 𝔅
23 eqid 2733 . . . . 5 (ℝ × ℝ) = (ℝ × ℝ)
24 xpeq1 5651 . . . . . . 7 (𝑥 = ℝ → (𝑥 × 𝑦) = (ℝ × 𝑦))
2524eqeq2d 2744 . . . . . 6 (𝑥 = ℝ → ((ℝ × ℝ) = (𝑥 × 𝑦) ↔ (ℝ × ℝ) = (ℝ × 𝑦)))
26 xpeq2 5658 . . . . . . 7 (𝑦 = ℝ → (ℝ × 𝑦) = (ℝ × ℝ))
2726eqeq2d 2744 . . . . . 6 (𝑦 = ℝ → ((ℝ × ℝ) = (ℝ × 𝑦) ↔ (ℝ × ℝ) = (ℝ × ℝ)))
2825, 27rspc2ev 3594 . . . . 5 ((ℝ ∈ 𝔅 ∧ ℝ ∈ 𝔅 ∧ (ℝ × ℝ) = (ℝ × ℝ)) → ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
2922, 22, 23, 28mp3an 1462 . . . 4 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦)
3014, 10elrnmpo 7496 . . . 4 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
3129, 30mpbir 230 . . 3 (ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
32 elpwuni 5069 . . 3 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) → (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)))
3331, 32ax-mp 5 . 2 (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ))
3416, 33mpbi 229 1 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070  wss 3914  𝒫 cpw 4564   cuni 4869   × cxp 5635  ran crn 5638  cfv 6500  cmpo 7363  cr 11058  sigAlgebracsiga 32771  𝔅cbrsiga 32844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-pre-lttri 11133  ax-pre-lttrn 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-ioo 13277  df-topgen 17333  df-top 22266  df-bases 22319  df-siga 32772  df-sigagen 32802  df-brsiga 32845
This theorem is referenced by:  sxbrsigalem5  32952  sxbrsiga  32954
  Copyright terms: Public domain W3C validator