Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2base Structured version   Visualization version   GIF version

Theorem br2base 32236
Description: The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
br2base ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Distinct variable group:   𝑥,𝑦

Proof of Theorem br2base
StepHypRef Expression
1 brsigasspwrn 32153 . . . . . . . 8 𝔅 ⊆ 𝒫 ℝ
21sseli 3917 . . . . . . 7 (𝑥 ∈ 𝔅𝑥 ∈ 𝒫 ℝ)
32elpwid 4544 . . . . . 6 (𝑥 ∈ 𝔅𝑥 ⊆ ℝ)
41sseli 3917 . . . . . . 7 (𝑦 ∈ 𝔅𝑦 ∈ 𝒫 ℝ)
54elpwid 4544 . . . . . 6 (𝑦 ∈ 𝔅𝑦 ⊆ ℝ)
6 xpss12 5604 . . . . . 6 ((𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
73, 5, 6syl2an 596 . . . . 5 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
8 vex 3436 . . . . . . 7 𝑥 ∈ V
9 vex 3436 . . . . . . 7 𝑦 ∈ V
108, 9xpex 7603 . . . . . 6 (𝑥 × 𝑦) ∈ V
1110elpw 4537 . . . . 5 ((𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) ↔ (𝑥 × 𝑦) ⊆ (ℝ × ℝ))
127, 11sylibr 233 . . . 4 ((𝑥 ∈ 𝔅𝑦 ∈ 𝔅) → (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ))
1312rgen2 3120 . . 3 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ)
14 eqid 2738 . . . 4 (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
1514rnmposs 31011 . . 3 (∀𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (𝑥 × 𝑦) ∈ 𝒫 (ℝ × ℝ) → ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ))
1613, 15ax-mp 5 . 2 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ)
17 unibrsiga 32154 . . . . . 6 𝔅 = ℝ
18 brsigarn 32152 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
19 elrnsiga 32094 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
20 unielsiga 32096 . . . . . . 7 (𝔅 ran sigAlgebra → 𝔅 ∈ 𝔅)
2118, 19, 20mp2b 10 . . . . . 6 𝔅 ∈ 𝔅
2217, 21eqeltrri 2836 . . . . 5 ℝ ∈ 𝔅
23 eqid 2738 . . . . 5 (ℝ × ℝ) = (ℝ × ℝ)
24 xpeq1 5603 . . . . . . 7 (𝑥 = ℝ → (𝑥 × 𝑦) = (ℝ × 𝑦))
2524eqeq2d 2749 . . . . . 6 (𝑥 = ℝ → ((ℝ × ℝ) = (𝑥 × 𝑦) ↔ (ℝ × ℝ) = (ℝ × 𝑦)))
26 xpeq2 5610 . . . . . . 7 (𝑦 = ℝ → (ℝ × 𝑦) = (ℝ × ℝ))
2726eqeq2d 2749 . . . . . 6 (𝑦 = ℝ → ((ℝ × ℝ) = (ℝ × 𝑦) ↔ (ℝ × ℝ) = (ℝ × ℝ)))
2825, 27rspc2ev 3572 . . . . 5 ((ℝ ∈ 𝔅 ∧ ℝ ∈ 𝔅 ∧ (ℝ × ℝ) = (ℝ × ℝ)) → ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
2922, 22, 23, 28mp3an 1460 . . . 4 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦)
3014, 10elrnmpo 7410 . . . 4 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝔅𝑦 ∈ 𝔅 (ℝ × ℝ) = (𝑥 × 𝑦))
3129, 30mpbir 230 . . 3 (ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦))
32 elpwuni 5034 . . 3 ((ℝ × ℝ) ∈ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) → (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)))
3331, 32ax-mp 5 . 2 (ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (ℝ × ℝ) ↔ ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ))
3416, 33mpbi 229 1 ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  𝒫 cpw 4533   cuni 4839   × cxp 5587  ran crn 5590  cfv 6433  cmpo 7277  cr 10870  sigAlgebracsiga 32076  𝔅cbrsiga 32149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-topgen 17154  df-top 22043  df-bases 22096  df-siga 32077  df-sigagen 32107  df-brsiga 32150
This theorem is referenced by:  sxbrsigalem5  32255  sxbrsiga  32257
  Copyright terms: Public domain W3C validator