MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopbas Structured version   Visualization version   GIF version

Theorem utopbas 24265
Description: The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
utopbas (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))

Proof of Theorem utopbas
Dummy variables 𝑎 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopval 24262 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
2 ssrab2 4103 . . . 4 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ⊆ 𝒫 𝑋
31, 2eqsstrdi 4063 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋)
4 ssidd 4032 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋𝑋)
5 ustssxp 24234 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → 𝑣 ⊆ (𝑋 × 𝑋))
6 imassrn 6100 . . . . . . . . . 10 (𝑣 “ {𝑥}) ⊆ ran 𝑣
7 rnss 5964 . . . . . . . . . . 11 (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ ran (𝑋 × 𝑋))
8 rnxpid 6204 . . . . . . . . . . 11 ran (𝑋 × 𝑋) = 𝑋
97, 8sseqtrdi 4059 . . . . . . . . . 10 (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣𝑋)
106, 9sstrid 4020 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → (𝑣 “ {𝑥}) ⊆ 𝑋)
115, 10syl 17 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑥}) ⊆ 𝑋)
1211ralrimiva 3152 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
13 ustne0 24243 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
14 r19.2zb 4519 . . . . . . . 8 (𝑈 ≠ ∅ ↔ (∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))
1513, 14sylib 218 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → (∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))
1612, 15mpd 15 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
1716ralrimivw 3156 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥𝑋𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
18 elutop 24263 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 ∈ (unifTop‘𝑈) ↔ (𝑋𝑋 ∧ ∀𝑥𝑋𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)))
194, 17, 18mpbir2and 712 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ (unifTop‘𝑈))
20 elpwuni 5128 . . . 4 (𝑋 ∈ (unifTop‘𝑈) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 (unifTop‘𝑈) = 𝑋))
2119, 20syl 17 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 (unifTop‘𝑈) = 𝑋))
223, 21mpbid 232 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = 𝑋)
2322eqcomd 2746 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   × cxp 5698  ran crn 5701  cima 5703  cfv 6573  UnifOncust 24229  unifTopcutop 24260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ust 24230  df-utop 24261
This theorem is referenced by:  utoptopon  24266  utop2nei  24280  utopreg  24282  tuslem  24296  tuslemOLD  24297
  Copyright terms: Public domain W3C validator