MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopbas Structured version   Visualization version   GIF version

Theorem utopbas 24260
Description: The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
utopbas (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))

Proof of Theorem utopbas
Dummy variables 𝑎 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopval 24257 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
2 ssrab2 4090 . . . 4 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ⊆ 𝒫 𝑋
31, 2eqsstrdi 4050 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋)
4 ssidd 4019 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋𝑋)
5 ustssxp 24229 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → 𝑣 ⊆ (𝑋 × 𝑋))
6 imassrn 6091 . . . . . . . . . 10 (𝑣 “ {𝑥}) ⊆ ran 𝑣
7 rnss 5953 . . . . . . . . . . 11 (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ ran (𝑋 × 𝑋))
8 rnxpid 6195 . . . . . . . . . . 11 ran (𝑋 × 𝑋) = 𝑋
97, 8sseqtrdi 4046 . . . . . . . . . 10 (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣𝑋)
106, 9sstrid 4007 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → (𝑣 “ {𝑥}) ⊆ 𝑋)
115, 10syl 17 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑥}) ⊆ 𝑋)
1211ralrimiva 3144 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
13 ustne0 24238 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
14 r19.2zb 4502 . . . . . . . 8 (𝑈 ≠ ∅ ↔ (∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))
1513, 14sylib 218 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → (∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))
1612, 15mpd 15 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
1716ralrimivw 3148 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥𝑋𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
18 elutop 24258 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 ∈ (unifTop‘𝑈) ↔ (𝑋𝑋 ∧ ∀𝑥𝑋𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)))
194, 17, 18mpbir2and 713 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ (unifTop‘𝑈))
20 elpwuni 5110 . . . 4 (𝑋 ∈ (unifTop‘𝑈) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 (unifTop‘𝑈) = 𝑋))
2119, 20syl 17 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 (unifTop‘𝑈) = 𝑋))
223, 21mpbid 232 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = 𝑋)
2322eqcomd 2741 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912   × cxp 5687  ran crn 5690  cima 5692  cfv 6563  UnifOncust 24224  unifTopcutop 24255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ust 24225  df-utop 24256
This theorem is referenced by:  utoptopon  24261  utop2nei  24275  utopreg  24277  tuslem  24291  tuslemOLD  24292
  Copyright terms: Public domain W3C validator