Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > utopbas | Structured version Visualization version GIF version |
Description: The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
utopbas | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopval 23292 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
2 | ssrab2 4009 | . . . 4 ⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ⊆ 𝒫 𝑋 | |
3 | 1, 2 | eqsstrdi 3971 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋) |
4 | ssidd 3940 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ⊆ 𝑋) | |
5 | ustssxp 23264 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → 𝑣 ⊆ (𝑋 × 𝑋)) | |
6 | imassrn 5969 | . . . . . . . . . 10 ⊢ (𝑣 “ {𝑥}) ⊆ ran 𝑣 | |
7 | rnss 5837 | . . . . . . . . . . 11 ⊢ (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ ran (𝑋 × 𝑋)) | |
8 | rnxpid 6065 | . . . . . . . . . . 11 ⊢ ran (𝑋 × 𝑋) = 𝑋 | |
9 | 7, 8 | sseqtrdi 3967 | . . . . . . . . . 10 ⊢ (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ 𝑋) |
10 | 6, 9 | sstrid 3928 | . . . . . . . . 9 ⊢ (𝑣 ⊆ (𝑋 × 𝑋) → (𝑣 “ {𝑥}) ⊆ 𝑋) |
11 | 5, 10 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑥}) ⊆ 𝑋) |
12 | 11 | ralrimiva 3107 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋) |
13 | ustne0 23273 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) | |
14 | r19.2zb 4423 | . . . . . . . 8 ⊢ (𝑈 ≠ ∅ ↔ (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)) | |
15 | 13, 14 | sylib 217 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)) |
16 | 12, 15 | mpd 15 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋) |
17 | 16 | ralrimivw 3108 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋) |
18 | elutop 23293 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 ∈ (unifTop‘𝑈) ↔ (𝑋 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))) | |
19 | 4, 17, 18 | mpbir2and 709 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ (unifTop‘𝑈)) |
20 | elpwuni 5030 | . . . 4 ⊢ (𝑋 ∈ (unifTop‘𝑈) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 ↔ ∪ (unifTop‘𝑈) = 𝑋)) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 ↔ ∪ (unifTop‘𝑈) = 𝑋)) |
22 | 3, 21 | mpbid 231 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ (unifTop‘𝑈) = 𝑋) |
23 | 22 | eqcomd 2744 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 × cxp 5578 ran crn 5581 “ cima 5583 ‘cfv 6418 UnifOncust 23259 unifTopcutop 23290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ust 23260 df-utop 23291 |
This theorem is referenced by: utoptopon 23296 utop2nei 23310 utopreg 23312 tuslem 23326 tuslemOLD 23327 |
Copyright terms: Public domain | W3C validator |