MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopbas Structured version   Visualization version   GIF version

Theorem utopbas 24139
Description: The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
utopbas (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))

Proof of Theorem utopbas
Dummy variables 𝑎 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopval 24136 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
2 ssrab2 4033 . . . 4 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ⊆ 𝒫 𝑋
31, 2eqsstrdi 3982 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋)
4 ssidd 3961 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋𝑋)
5 ustssxp 24108 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → 𝑣 ⊆ (𝑋 × 𝑋))
6 imassrn 6026 . . . . . . . . . 10 (𝑣 “ {𝑥}) ⊆ ran 𝑣
7 rnss 5885 . . . . . . . . . . 11 (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ ran (𝑋 × 𝑋))
8 rnxpid 6126 . . . . . . . . . . 11 ran (𝑋 × 𝑋) = 𝑋
97, 8sseqtrdi 3978 . . . . . . . . . 10 (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣𝑋)
106, 9sstrid 3949 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → (𝑣 “ {𝑥}) ⊆ 𝑋)
115, 10syl 17 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑥}) ⊆ 𝑋)
1211ralrimiva 3121 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
13 ustne0 24117 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
14 r19.2zb 4449 . . . . . . . 8 (𝑈 ≠ ∅ ↔ (∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))
1513, 14sylib 218 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → (∀𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))
1612, 15mpd 15 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
1716ralrimivw 3125 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥𝑋𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)
18 elutop 24137 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 ∈ (unifTop‘𝑈) ↔ (𝑋𝑋 ∧ ∀𝑥𝑋𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)))
194, 17, 18mpbir2and 713 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ (unifTop‘𝑈))
20 elpwuni 5057 . . . 4 (𝑋 ∈ (unifTop‘𝑈) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 (unifTop‘𝑈) = 𝑋))
2119, 20syl 17 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 (unifTop‘𝑈) = 𝑋))
223, 21mpbid 232 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = 𝑋)
2322eqcomd 2735 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861   × cxp 5621  ran crn 5624  cima 5626  cfv 6486  UnifOncust 24103  unifTopcutop 24134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ust 24104  df-utop 24135
This theorem is referenced by:  utoptopon  24140  utop2nei  24154  utopreg  24156  tuslem  24170
  Copyright terms: Public domain W3C validator