Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > utopbas | Structured version Visualization version GIF version |
Description: The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
utopbas | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopval 23384 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
2 | ssrab2 4013 | . . . 4 ⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ⊆ 𝒫 𝑋 | |
3 | 1, 2 | eqsstrdi 3975 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ⊆ 𝒫 𝑋) |
4 | ssidd 3944 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ⊆ 𝑋) | |
5 | ustssxp 23356 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → 𝑣 ⊆ (𝑋 × 𝑋)) | |
6 | imassrn 5980 | . . . . . . . . . 10 ⊢ (𝑣 “ {𝑥}) ⊆ ran 𝑣 | |
7 | rnss 5848 | . . . . . . . . . . 11 ⊢ (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ ran (𝑋 × 𝑋)) | |
8 | rnxpid 6076 | . . . . . . . . . . 11 ⊢ ran (𝑋 × 𝑋) = 𝑋 | |
9 | 7, 8 | sseqtrdi 3971 | . . . . . . . . . 10 ⊢ (𝑣 ⊆ (𝑋 × 𝑋) → ran 𝑣 ⊆ 𝑋) |
10 | 6, 9 | sstrid 3932 | . . . . . . . . 9 ⊢ (𝑣 ⊆ (𝑋 × 𝑋) → (𝑣 “ {𝑥}) ⊆ 𝑋) |
11 | 5, 10 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑥}) ⊆ 𝑋) |
12 | 11 | ralrimiva 3103 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋) |
13 | ustne0 23365 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) | |
14 | r19.2zb 4426 | . . . . . . . 8 ⊢ (𝑈 ≠ ∅ ↔ (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)) | |
15 | 13, 14 | sylib 217 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋 → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋)) |
16 | 12, 15 | mpd 15 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋) |
17 | 16 | ralrimivw 3104 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋) |
18 | elutop 23385 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 ∈ (unifTop‘𝑈) ↔ (𝑋 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑋))) | |
19 | 4, 17, 18 | mpbir2and 710 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ (unifTop‘𝑈)) |
20 | elpwuni 5034 | . . . 4 ⊢ (𝑋 ∈ (unifTop‘𝑈) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 ↔ ∪ (unifTop‘𝑈) = 𝑋)) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((unifTop‘𝑈) ⊆ 𝒫 𝑋 ↔ ∪ (unifTop‘𝑈) = 𝑋)) |
22 | 3, 21 | mpbid 231 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ (unifTop‘𝑈) = 𝑋) |
23 | 22 | eqcomd 2744 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 × cxp 5587 ran crn 5590 “ cima 5592 ‘cfv 6433 UnifOncust 23351 unifTopcutop 23382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ust 23352 df-utop 23383 |
This theorem is referenced by: utoptopon 23388 utop2nei 23402 utopreg 23404 tuslem 23418 tuslemOLD 23419 |
Copyright terms: Public domain | W3C validator |