![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqs | Structured version Visualization version GIF version |
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elqs.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elqs | ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqs.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elqsg 8807 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 [cec 8742 / cqs 8743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-qs 8750 |
This theorem is referenced by: qsss 8817 qsid 8822 erovlem 8852 sylow2blem3 19655 qusabl 19898 cldsubg 24135 qustgplem 24145 qsxpid 33370 n0elqs 38308 prter2 38863 |
Copyright terms: Public domain | W3C validator |