MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqs Structured version   Visualization version   GIF version

Theorem elqs 8516
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1 𝐵 ∈ V
Assertion
Ref Expression
elqs (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2 𝐵 ∈ V
2 elqsg 8515 . 2 (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
31, 2ax-mp 5 1 (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  [cec 8454   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-qs 8462
This theorem is referenced by:  qsss  8525  qsid  8530  erovlem  8560  sylow2blem3  19142  qusabl  19381  cldsubg  23170  qustgplem  23180  qsxpid  31460  n0elqs  36388  prter2  36822
  Copyright terms: Public domain W3C validator