Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqs Structured version   Visualization version   GIF version

Theorem elqs 8339
 Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1 𝐵 ∈ V
Assertion
Ref Expression
elqs (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2 𝐵 ∈ V
2 elqsg 8338 . 2 (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
31, 2ax-mp 5 1 (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   = wceq 1530   ∈ wcel 2107  ∃wrex 3144  Vcvv 3500  [cec 8277   / cqs 8278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-rex 3149  df-qs 8285 This theorem is referenced by:  qsss  8348  qsid  8353  erovlem  8383  sylow2blem3  18667  qusabl  18905  cldsubg  22634  qustgplem  22644  qsxpid  30841  n0elqs  35451  prter2  35884
 Copyright terms: Public domain W3C validator