| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqs | Structured version Visualization version GIF version | ||
| Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elqs.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elqs | ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqs.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elqsg 8683 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 [cec 8615 / cqs 8616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-qs 8623 |
| This theorem is referenced by: qsss 8695 qsid 8700 erovlem 8732 sylow2blem3 19529 qusabl 19772 cldsubg 24021 qustgplem 24031 qsxpid 33319 n0elqs 38360 prter2 38920 |
| Copyright terms: Public domain | W3C validator |