MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqs Structured version   Visualization version   GIF version

Theorem elqs 8709
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1 𝐵 ∈ V
Assertion
Ref Expression
elqs (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2 𝐵 ∈ V
2 elqsg 8708 . 2 (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
31, 2ax-mp 5 1 (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  wrex 3074  Vcvv 3446  [cec 8647   / cqs 8648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rex 3075  df-qs 8655
This theorem is referenced by:  qsss  8718  qsid  8723  erovlem  8753  sylow2blem3  19405  qusabl  19644  cldsubg  23465  qustgplem  23475  qsxpid  32153  n0elqs  36790  prter2  37346
  Copyright terms: Public domain W3C validator