![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqs | Structured version Visualization version GIF version |
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elqs.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elqs | ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqs.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elqsg 8781 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 Vcvv 3470 [cec 8717 / cqs 8718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3067 df-qs 8725 |
This theorem is referenced by: qsss 8791 qsid 8796 erovlem 8826 sylow2blem3 19571 qusabl 19814 cldsubg 24009 qustgplem 24019 qsxpid 33069 n0elqs 37793 prter2 38348 |
Copyright terms: Public domain | W3C validator |