MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqs Structured version   Visualization version   GIF version

Theorem elqs 8684
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1 𝐵 ∈ V
Assertion
Ref Expression
elqs (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2 𝐵 ∈ V
2 elqsg 8683 . 2 (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
31, 2ax-mp 5 1 (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-qs 8623
This theorem is referenced by:  qsss  8695  qsid  8700  erovlem  8732  sylow2blem3  19529  qusabl  19772  cldsubg  24021  qustgplem  24031  qsxpid  33319  n0elqs  38360  prter2  38920
  Copyright terms: Public domain W3C validator