| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0elqs | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0elqs | ⊢ (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecdmn0 8776 | . . 3 ⊢ (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅) | |
| 2 | 1 | ralbii 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ↔ ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ≠ ∅) |
| 3 | dfss3 3952 | . 2 ⊢ (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅) | |
| 4 | nne 2935 | . . . . 5 ⊢ (¬ [𝑥]𝑅 ≠ ∅ ↔ [𝑥]𝑅 = ∅) | |
| 5 | 4 | rexbii 3082 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 [𝑥]𝑅 = ∅) |
| 6 | 5 | notbii 320 | . . 3 ⊢ (¬ ∃𝑥 ∈ 𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥 ∈ 𝐴 [𝑥]𝑅 = ∅) |
| 7 | dfral2 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ [𝑥]𝑅 ≠ ∅) | |
| 8 | 0ex 5287 | . . . . . 6 ⊢ ∅ ∈ V | |
| 9 | 8 | elqs 8791 | . . . . 5 ⊢ (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 ∅ = [𝑥]𝑅) |
| 10 | eqcom 2741 | . . . . . 6 ⊢ (∅ = [𝑥]𝑅 ↔ [𝑥]𝑅 = ∅) | |
| 11 | 10 | rexbii 3082 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∅ = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 [𝑥]𝑅 = ∅) |
| 12 | 9, 11 | bitri 275 | . . . 4 ⊢ (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝑥]𝑅 = ∅) |
| 13 | 12 | notbii 320 | . . 3 ⊢ (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ¬ ∃𝑥 ∈ 𝐴 [𝑥]𝑅 = ∅) |
| 14 | 6, 7, 13 | 3bitr4ri 304 | . 2 ⊢ (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ≠ ∅) |
| 15 | 2, 3, 14 | 3bitr4ri 304 | 1 ⊢ (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 ∅c0 4313 dom cdm 5665 [cec 8725 / cqs 8726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8729 df-qs 8733 |
| This theorem is referenced by: n0elqs2 38287 n0eldmqs 38608 |
| Copyright terms: Public domain | W3C validator |