Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elqs Structured version   Visualization version   GIF version

Theorem n0elqs 36057
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019.)
Assertion
Ref Expression
n0elqs (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)

Proof of Theorem n0elqs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ecdmn0 8352 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
21ralbii 3097 . 2 (∀𝑥𝐴 𝑥 ∈ dom 𝑅 ↔ ∀𝑥𝐴 [𝑥]𝑅 ≠ ∅)
3 dfss3 3882 . 2 (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝑅)
4 nne 2955 . . . . 5 (¬ [𝑥]𝑅 ≠ ∅ ↔ [𝑥]𝑅 = ∅)
54rexbii 3175 . . . 4 (∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
65notbii 323 . . 3 (¬ ∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
7 dfral2 3164 . . 3 (∀𝑥𝐴 [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅)
8 0ex 5181 . . . . . 6 ∅ ∈ V
98elqs 8365 . . . . 5 (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 ∅ = [𝑥]𝑅)
10 eqcom 2765 . . . . . 6 (∅ = [𝑥]𝑅 ↔ [𝑥]𝑅 = ∅)
1110rexbii 3175 . . . . 5 (∃𝑥𝐴 ∅ = [𝑥]𝑅 ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
129, 11bitri 278 . . . 4 (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
1312notbii 323 . . 3 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ¬ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
146, 7, 133bitr4ri 307 . 2 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ∀𝑥𝐴 [𝑥]𝑅 ≠ ∅)
152, 3, 143bitr4ri 307 1 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  wss 3860  c0 4227  dom cdm 5528  [cec 8303   / cqs 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-cnv 5536  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ec 8307  df-qs 8311
This theorem is referenced by:  n0elqs2  36058  n0eldmqs  36357
  Copyright terms: Public domain W3C validator