Step | Hyp | Ref
| Expression |
1 | | ablnsg 19448 |
. . . . 5
⊢ (𝐺 ∈ Abel →
(NrmSGrp‘𝐺) =
(SubGrp‘𝐺)) |
2 | 1 | eleq2d 2824 |
. . . 4
⊢ (𝐺 ∈ Abel → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ (SubGrp‘𝐺))) |
3 | 2 | biimpar 478 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (NrmSGrp‘𝐺)) |
4 | | qusabl.h |
. . . 4
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
5 | 4 | qusgrp 18811 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
6 | 3, 5 | syl 17 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp) |
7 | | vex 3436 |
. . . . . . 7
⊢ 𝑥 ∈ V |
8 | 7 | elqs 8558 |
. . . . . 6
⊢ (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆)) |
9 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))) |
10 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = (Base‘𝐺)) |
11 | | ovexd 7310 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝑆) ∈ V) |
12 | | simpl 483 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel) |
13 | 9, 10, 11, 12 | qusbas 17256 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝑆)) = (Base‘𝐻)) |
14 | 13 | eleq2d 2824 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝐻))) |
15 | 8, 14 | bitr3id 285 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ↔ 𝑥 ∈ (Base‘𝐻))) |
16 | | vex 3436 |
. . . . . . 7
⊢ 𝑦 ∈ V |
17 | 16 | elqs 8558 |
. . . . . 6
⊢ (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) |
18 | 13 | eleq2d 2824 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝐻))) |
19 | 17, 18 | bitr3id 285 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆) ↔ 𝑦 ∈ (Base‘𝐻))) |
20 | 15, 19 | anbi12d 631 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)))) |
21 | | reeanv 3294 |
. . . . 5
⊢
(∃𝑎 ∈
(Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆))) |
22 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
23 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
24 | 22, 23 | ablcom 19404 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)𝑏) = (𝑏(+g‘𝐺)𝑎)) |
25 | 24 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑏(+g‘𝐺)𝑎)) |
26 | 25 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑏(+g‘𝐺)𝑎)) |
27 | 26 | eceq1d 8537 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → [(𝑎(+g‘𝐺)𝑏)](𝐺 ~QG 𝑆) = [(𝑏(+g‘𝐺)𝑎)](𝐺 ~QG 𝑆)) |
28 | 3 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑆 ∈ (NrmSGrp‘𝐺)) |
29 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑎 ∈ (Base‘𝐺)) |
30 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑏 ∈ (Base‘𝐺)) |
31 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐻) = (+g‘𝐻) |
32 | 4, 22, 23, 31 | qusadd 18813 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ([𝑎](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g‘𝐺)𝑏)](𝐺 ~QG 𝑆)) |
33 | 28, 29, 30, 32 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g‘𝐺)𝑏)](𝐺 ~QG 𝑆)) |
34 | 4, 22, 23, 31 | qusadd 18813 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺)) → ([𝑏](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g‘𝐺)𝑎)](𝐺 ~QG 𝑆)) |
35 | 28, 30, 29, 34 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑏](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g‘𝐺)𝑎)](𝐺 ~QG 𝑆)) |
36 | 27, 33, 35 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑎](𝐺 ~QG 𝑆))) |
37 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g‘𝐻)𝑦) = ([𝑎](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑏](𝐺 ~QG 𝑆))) |
38 | | oveq12 7284 |
. . . . . . . . 9
⊢ ((𝑦 = [𝑏](𝐺 ~QG 𝑆) ∧ 𝑥 = [𝑎](𝐺 ~QG 𝑆)) → (𝑦(+g‘𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑎](𝐺 ~QG 𝑆))) |
39 | 38 | ancoms 459 |
. . . . . . . 8
⊢ ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑦(+g‘𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑎](𝐺 ~QG 𝑆))) |
40 | 37, 39 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → ((𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥) ↔ ([𝑎](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g‘𝐻)[𝑎](𝐺 ~QG 𝑆)))) |
41 | 36, 40 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
42 | 41 | rexlimdvva 3223 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
43 | 21, 42 | syl5bir 242 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
44 | 20, 43 | sylbird 259 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
45 | 44 | ralrimivv 3122 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)) |
46 | | eqid 2738 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
47 | 46, 31 | isabl2 19395 |
. 2
⊢ (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
48 | 6, 45, 47 | sylanbrc 583 |
1
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |