MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusabl Structured version   Visualization version   GIF version

Theorem qusabl 19733
Description: If 𝑌 is a subgroup of the abelian group 𝐺, then 𝐻 = 𝐺 / 𝑌 is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
qusabl.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem qusabl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablnsg 19715 . . . . 5 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
21eleq2d 2820 . . . 4 (𝐺 ∈ Abel → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ (SubGrp‘𝐺)))
32biimpar 479 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (NrmSGrp‘𝐺))
4 qusabl.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
54qusgrp 19065 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
7 vex 3479 . . . . . . 7 𝑥 ∈ V
87elqs 8763 . . . . . 6 (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆))
94a1i 11 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
10 eqidd 2734 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7444 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝑆) ∈ V)
12 simpl 484 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel)
139, 10, 11, 12qusbas 17491 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝑆)) = (Base‘𝐻))
1413eleq2d 2820 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝐻)))
158, 14bitr3id 285 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ↔ 𝑥 ∈ (Base‘𝐻)))
16 vex 3479 . . . . . . 7 𝑦 ∈ V
1716elqs 8763 . . . . . 6 (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆))
1813eleq2d 2820 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝐻)))
1917, 18bitr3id 285 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆) ↔ 𝑦 ∈ (Base‘𝐻)))
2015, 19anbi12d 632 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))))
21 reeanv 3227 . . . . 5 (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)))
22 eqid 2733 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
23 eqid 2733 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
2422, 23ablcom 19667 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
25243expb 1121 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2625adantlr 714 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2726eceq1d 8742 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
283adantr 482 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑆 ∈ (NrmSGrp‘𝐺))
29 simprl 770 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑎 ∈ (Base‘𝐺))
30 simprr 772 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑏 ∈ (Base‘𝐺))
31 eqid 2733 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
324, 22, 23, 31qusadd 19067 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
3328, 29, 30, 32syl3anc 1372 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
344, 22, 23, 31qusadd 19067 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺)) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3528, 30, 29, 34syl3anc 1372 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3627, 33, 353eqtr4d 2783 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
37 oveq12 7418 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)))
38 oveq12 7418 . . . . . . . . 9 ((𝑦 = [𝑏](𝐺 ~QG 𝑆) ∧ 𝑥 = [𝑎](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
3938ancoms 460 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
4037, 39eqeq12d 2749 . . . . . . 7 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → ((𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥) ↔ ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆))))
4136, 40syl5ibrcom 246 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4241rexlimdvva 3212 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4321, 42biimtrrid 242 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4420, 43sylbird 260 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4544ralrimivv 3199 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))
46 eqid 2733 . . 3 (Base‘𝐻) = (Base‘𝐻)
4746, 31isabl2 19658 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
486, 45, 47sylanbrc 584 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cfv 6544  (class class class)co 7409  [cec 8701   / cqs 8702  Basecbs 17144  +gcplusg 17197   /s cqus 17451  Grpcgrp 18819  SubGrpcsubg 19000  NrmSGrpcnsg 19001   ~QG cqg 19002  Abelcabl 19649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-ec 8705  df-qs 8709  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-0g 17387  df-imas 17454  df-qus 17455  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-subg 19003  df-nsg 19004  df-eqg 19005  df-cmn 19650  df-abl 19651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator