MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusabl Structured version   Visualization version   GIF version

Theorem qusabl 19643
Description: If 𝑌 is a subgroup of the abelian group 𝐺, then 𝐻 = 𝐺 / 𝑌 is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
qusabl.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem qusabl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablnsg 19625 . . . . 5 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
21eleq2d 2823 . . . 4 (𝐺 ∈ Abel → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ (SubGrp‘𝐺)))
32biimpar 478 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (NrmSGrp‘𝐺))
4 qusabl.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
54qusgrp 18985 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
7 vex 3449 . . . . . . 7 𝑥 ∈ V
87elqs 8708 . . . . . 6 (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆))
94a1i 11 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
10 eqidd 2737 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7392 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝑆) ∈ V)
12 simpl 483 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel)
139, 10, 11, 12qusbas 17427 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝑆)) = (Base‘𝐻))
1413eleq2d 2823 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝐻)))
158, 14bitr3id 284 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ↔ 𝑥 ∈ (Base‘𝐻)))
16 vex 3449 . . . . . . 7 𝑦 ∈ V
1716elqs 8708 . . . . . 6 (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆))
1813eleq2d 2823 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝐻)))
1917, 18bitr3id 284 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆) ↔ 𝑦 ∈ (Base‘𝐻)))
2015, 19anbi12d 631 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))))
21 reeanv 3217 . . . . 5 (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)))
22 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
23 eqid 2736 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
2422, 23ablcom 19581 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
25243expb 1120 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2625adantlr 713 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2726eceq1d 8687 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
283adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑆 ∈ (NrmSGrp‘𝐺))
29 simprl 769 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑎 ∈ (Base‘𝐺))
30 simprr 771 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑏 ∈ (Base‘𝐺))
31 eqid 2736 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
324, 22, 23, 31qusadd 18987 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
3328, 29, 30, 32syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
344, 22, 23, 31qusadd 18987 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺)) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3528, 30, 29, 34syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3627, 33, 353eqtr4d 2786 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
37 oveq12 7366 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)))
38 oveq12 7366 . . . . . . . . 9 ((𝑦 = [𝑏](𝐺 ~QG 𝑆) ∧ 𝑥 = [𝑎](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
3938ancoms 459 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
4037, 39eqeq12d 2752 . . . . . . 7 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → ((𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥) ↔ ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆))))
4136, 40syl5ibrcom 246 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4241rexlimdvva 3205 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4321, 42biimtrrid 242 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4420, 43sylbird 259 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4544ralrimivv 3195 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))
46 eqid 2736 . . 3 (Base‘𝐻) = (Base‘𝐻)
4746, 31isabl2 19572 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
486, 45, 47sylanbrc 583 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cfv 6496  (class class class)co 7357  [cec 8646   / cqs 8647  Basecbs 17083  +gcplusg 17133   /s cqus 17387  Grpcgrp 18748  SubGrpcsubg 18922  NrmSGrpcnsg 18923   ~QG cqg 18924  Abelcabl 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-subg 18925  df-nsg 18926  df-eqg 18927  df-cmn 19564  df-abl 19565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator