Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsxpid Structured version   Visualization version   GIF version

Theorem qsxpid 32150
Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Assertion
Ref Expression
qsxpid (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})

Proof of Theorem qsxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = [𝑥](𝐴 × 𝐴))
2 ecxpid 32148 . . . . . . . 8 (𝑥𝐴 → [𝑥](𝐴 × 𝐴) = 𝐴)
32adantr 481 . . . . . . 7 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → [𝑥](𝐴 × 𝐴) = 𝐴)
41, 3eqtrd 2776 . . . . . 6 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = 𝐴)
54rexlimiva 3144 . . . . 5 (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) → 𝑦 = 𝐴)
65adantl 482 . . . 4 ((𝐴 ≠ ∅ ∧ ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = 𝐴)
7 n0 4306 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
87biimpi 215 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
9 simpl 483 . . . . . . . . . 10 ((𝑦 = 𝐴𝑥𝐴) → 𝑦 = 𝐴)
102adantl 482 . . . . . . . . . 10 ((𝑦 = 𝐴𝑥𝐴) → [𝑥](𝐴 × 𝐴) = 𝐴)
119, 10eqtr4d 2779 . . . . . . . . 9 ((𝑦 = 𝐴𝑥𝐴) → 𝑦 = [𝑥](𝐴 × 𝐴))
1211ex 413 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
1312ancld 551 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝐴 → (𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴))))
1413eximdv 1920 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴))))
158, 14mpan9 507 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝑦 = 𝐴) → ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
16 df-rex 3074 . . . . 5 (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
1715, 16sylibr 233 . . . 4 ((𝐴 ≠ ∅ ∧ 𝑦 = 𝐴) → ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴))
186, 17impbida 799 . . 3 (𝐴 ≠ ∅ → (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) ↔ 𝑦 = 𝐴))
19 vex 3449 . . . 4 𝑦 ∈ V
2019elqs 8708 . . 3 (𝑦 ∈ (𝐴 / (𝐴 × 𝐴)) ↔ ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴))
21 velsn 4602 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
2218, 20, 213bitr4g 313 . 2 (𝐴 ≠ ∅ → (𝑦 ∈ (𝐴 / (𝐴 × 𝐴)) ↔ 𝑦 ∈ {𝐴}))
2322eqrdv 2734 1 (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  c0 4282  {csn 4586   × cxp 5631  [cec 8646   / cqs 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-br 5106  df-opab 5168  df-xp 5639  df-cnv 5641  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ec 8650  df-qs 8654
This theorem is referenced by:  qustriv  32152
  Copyright terms: Public domain W3C validator