Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsxpid Structured version   Visualization version   GIF version

Theorem qsxpid 33371
Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Assertion
Ref Expression
qsxpid (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})

Proof of Theorem qsxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = [𝑥](𝐴 × 𝐴))
2 ecxpid 33370 . . . . . . . 8 (𝑥𝐴 → [𝑥](𝐴 × 𝐴) = 𝐴)
32adantr 480 . . . . . . 7 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → [𝑥](𝐴 × 𝐴) = 𝐴)
41, 3eqtrd 2768 . . . . . 6 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = 𝐴)
54rexlimiva 3126 . . . . 5 (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) → 𝑦 = 𝐴)
65adantl 481 . . . 4 ((𝐴 ≠ ∅ ∧ ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = 𝐴)
7 n0 4302 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
87biimpi 216 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
9 simpl 482 . . . . . . . . . 10 ((𝑦 = 𝐴𝑥𝐴) → 𝑦 = 𝐴)
102adantl 481 . . . . . . . . . 10 ((𝑦 = 𝐴𝑥𝐴) → [𝑥](𝐴 × 𝐴) = 𝐴)
119, 10eqtr4d 2771 . . . . . . . . 9 ((𝑦 = 𝐴𝑥𝐴) → 𝑦 = [𝑥](𝐴 × 𝐴))
1211ex 412 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
1312ancld 550 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝐴 → (𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴))))
1413eximdv 1918 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴))))
158, 14mpan9 506 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝑦 = 𝐴) → ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
16 df-rex 3058 . . . . 5 (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
1715, 16sylibr 234 . . . 4 ((𝐴 ≠ ∅ ∧ 𝑦 = 𝐴) → ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴))
186, 17impbida 800 . . 3 (𝐴 ≠ ∅ → (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) ↔ 𝑦 = 𝐴))
19 vex 3441 . . . 4 𝑦 ∈ V
2019elqs 8698 . . 3 (𝑦 ∈ (𝐴 / (𝐴 × 𝐴)) ↔ ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴))
21 velsn 4593 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
2218, 20, 213bitr4g 314 . 2 (𝐴 ≠ ∅ → (𝑦 ∈ (𝐴 / (𝐴 × 𝐴)) ↔ 𝑦 ∈ {𝐴}))
2322eqrdv 2731 1 (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  c0 4282  {csn 4577   × cxp 5619  [cec 8629   / cqs 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637
This theorem is referenced by:  qustriv  33373
  Copyright terms: Public domain W3C validator