MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem3 Structured version   Visualization version   GIF version

Theorem sylow2blem3 19559
Description: Sylow's second theorem. Putting together the results of sylow2a 19556 and the orbit-stabilizer theorem to show that 𝑃 does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some 𝑔𝑋 with 𝑔𝐾 = 𝑔𝐾 for all 𝐻. This implies that invg(𝑔)𝑔𝐾, so is in the conjugated subgroup 𝑔𝐾invg(𝑔). (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow2blem3.hp (𝜑𝑃 pGrp (𝐺s 𝐻))
sylow2blem3.kn (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
sylow2blem3.d = (-g𝐺)
Assertion
Ref Expression
sylow2blem3 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐺   𝑔,𝐾,𝑥,𝑦,𝑧   · ,𝑔,𝑥,𝑦,𝑧   + ,𝑔,𝑥,𝑦,𝑧   ,𝑔,𝑥,𝑦,𝑧   𝜑,𝑔,𝑧   𝑥, ,𝑧   𝑔,𝐻,𝑥,𝑦,𝑧   𝑔,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑧,𝑔)   (𝑦,𝑔)

Proof of Theorem sylow2blem3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 sylow2blem3.hp . . . . . . . . 9 (𝜑𝑃 pGrp (𝐺s 𝐻))
2 pgpprm 19530 . . . . . . . . 9 (𝑃 pGrp (𝐺s 𝐻) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
4 sylow2b.h . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 19070 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
7 sylow2b.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
87grpbn0 18905 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
96, 8syl 17 . . . . . . . . 9 (𝜑𝑋 ≠ ∅)
10 sylow2b.xf . . . . . . . . . 10 (𝜑𝑋 ∈ Fin)
11 hashnncl 14338 . . . . . . . . . 10 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1210, 11syl 17 . . . . . . . . 9 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
139, 12mpbird 257 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ)
14 pcndvds2 16846 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
153, 13, 14syl2anc 584 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
16 sylow2b.r . . . . . . . . . . 11 = (𝐺 ~QG 𝐾)
17 sylow2b.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (SubGrp‘𝐺))
187, 16, 17, 10lagsubg2 19133 . . . . . . . . . 10 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝐾)))
1918oveq1d 7405 . . . . . . . . 9 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = (((♯‘(𝑋 / )) · (♯‘𝐾)) / (♯‘𝐾)))
20 sylow2blem3.kn . . . . . . . . . 10 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
2120oveq2d 7406 . . . . . . . . 9 (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
22 pwfi 9275 . . . . . . . . . . . . . 14 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
2310, 22sylib 218 . . . . . . . . . . . . 13 (𝜑 → 𝒫 𝑋 ∈ Fin)
247, 16eqger 19117 . . . . . . . . . . . . . . 15 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
2517, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 Er 𝑋)
2625qsss 8752 . . . . . . . . . . . . 13 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
2723, 26ssfid 9219 . . . . . . . . . . . 12 (𝜑 → (𝑋 / ) ∈ Fin)
28 hashcl 14328 . . . . . . . . . . . 12 ((𝑋 / ) ∈ Fin → (♯‘(𝑋 / )) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑋 / )) ∈ ℕ0)
3029nn0cnd 12512 . . . . . . . . . 10 (𝜑 → (♯‘(𝑋 / )) ∈ ℂ)
31 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
3231subg0cl 19073 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐾)
3317, 32syl 17 . . . . . . . . . . . . 13 (𝜑 → (0g𝐺) ∈ 𝐾)
3433ne0d 4308 . . . . . . . . . . . 12 (𝜑𝐾 ≠ ∅)
357subgss 19066 . . . . . . . . . . . . . . 15 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
3617, 35syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾𝑋)
3710, 36ssfid 9219 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Fin)
38 hashnncl 14338 . . . . . . . . . . . . 13 (𝐾 ∈ Fin → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅))
4034, 39mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝐾) ∈ ℕ)
4140nncnd 12209 . . . . . . . . . 10 (𝜑 → (♯‘𝐾) ∈ ℂ)
4240nnne0d 12243 . . . . . . . . . 10 (𝜑 → (♯‘𝐾) ≠ 0)
4330, 41, 42divcan4d 11971 . . . . . . . . 9 (𝜑 → (((♯‘(𝑋 / )) · (♯‘𝐾)) / (♯‘𝐾)) = (♯‘(𝑋 / )))
4419, 21, 433eqtr3d 2773 . . . . . . . 8 (𝜑 → ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (♯‘(𝑋 / )))
4544breq2d 5122 . . . . . . 7 (𝜑 → (𝑃 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ↔ 𝑃 ∥ (♯‘(𝑋 / ))))
4615, 45mtbid 324 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝑋 / )))
47 prmz 16652 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
483, 47syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
4929nn0zd 12562 . . . . . . 7 (𝜑 → (♯‘(𝑋 / )) ∈ ℤ)
50 ssrab2 4046 . . . . . . . . . 10 {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ⊆ (𝑋 / )
51 ssfi 9143 . . . . . . . . . 10 (((𝑋 / ) ∈ Fin ∧ {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ⊆ (𝑋 / )) → {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin)
5227, 50, 51sylancl 586 . . . . . . . . 9 (𝜑 → {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin)
53 hashcl 14328 . . . . . . . . 9 ({𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin → (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈ ℕ0)
5452, 53syl 17 . . . . . . . 8 (𝜑 → (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈ ℕ0)
5554nn0zd 12562 . . . . . . 7 (𝜑 → (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈ ℤ)
56 eqid 2730 . . . . . . . 8 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
57 sylow2b.a . . . . . . . . 9 + = (+g𝐺)
58 sylow2b.m . . . . . . . . 9 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
597, 10, 4, 17, 57, 16, 58sylow2blem2 19558 . . . . . . . 8 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
60 eqid 2730 . . . . . . . . . . 11 (𝐺s 𝐻) = (𝐺s 𝐻)
6160subgbas 19069 . . . . . . . . . 10 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
624, 61syl 17 . . . . . . . . 9 (𝜑𝐻 = (Base‘(𝐺s 𝐻)))
637subgss 19066 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
644, 63syl 17 . . . . . . . . . 10 (𝜑𝐻𝑋)
6510, 64ssfid 9219 . . . . . . . . 9 (𝜑𝐻 ∈ Fin)
6662, 65eqeltrrd 2830 . . . . . . . 8 (𝜑 → (Base‘(𝐺s 𝐻)) ∈ Fin)
67 eqid 2730 . . . . . . . 8 {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} = {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}
68 eqid 2730 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑋 / ) ∧ ∃𝑔 ∈ (Base‘(𝐺s 𝐻))(𝑔 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑋 / ) ∧ ∃𝑔 ∈ (Base‘(𝐺s 𝐻))(𝑔 · 𝑥) = 𝑦)}
6956, 59, 1, 66, 27, 67, 68sylow2a 19556 . . . . . . 7 (𝜑𝑃 ∥ ((♯‘(𝑋 / )) − (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧})))
70 dvdssub2 16278 . . . . . . 7 (((𝑃 ∈ ℤ ∧ (♯‘(𝑋 / )) ∈ ℤ ∧ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈ ℤ) ∧ 𝑃 ∥ ((♯‘(𝑋 / )) − (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}))) → (𝑃 ∥ (♯‘(𝑋 / )) ↔ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧})))
7148, 49, 55, 69, 70syl31anc 1375 . . . . . 6 (𝜑 → (𝑃 ∥ (♯‘(𝑋 / )) ↔ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧})))
7246, 71mtbid 324 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}))
73 hasheq0 14335 . . . . . . . 8 ({𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin → ((♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 ↔ {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} = ∅))
7452, 73syl 17 . . . . . . 7 (𝜑 → ((♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 ↔ {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} = ∅))
75 dvds0 16248 . . . . . . . . 9 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
7648, 75syl 17 . . . . . . . 8 (𝜑𝑃 ∥ 0)
77 breq2 5114 . . . . . . . 8 ((♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 → (𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) ↔ 𝑃 ∥ 0))
7876, 77syl5ibrcom 247 . . . . . . 7 (𝜑 → ((♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 → 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧})))
7974, 78sylbird 260 . . . . . 6 (𝜑 → ({𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} = ∅ → 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧})))
8079necon3bd 2940 . . . . 5 (𝜑 → (¬ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧}) → {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ≠ ∅))
8172, 80mpd 15 . . . 4 (𝜑 → {𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ≠ ∅)
82 rabn0 4355 . . . 4 ({𝑧 ∈ (𝑋 / ) ∣ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧} ≠ ∅ ↔ ∃𝑧 ∈ (𝑋 / )∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧)
8381, 82sylib 218 . . 3 (𝜑 → ∃𝑧 ∈ (𝑋 / )∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧)
8462raleqdv 3301 . . . 4 (𝜑 → (∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 ↔ ∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧))
8584rexbidv 3158 . . 3 (𝜑 → (∃𝑧 ∈ (𝑋 / )∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 ↔ ∃𝑧 ∈ (𝑋 / )∀𝑢 ∈ (Base‘(𝐺s 𝐻))(𝑢 · 𝑧) = 𝑧))
8683, 85mpbird 257 . 2 (𝜑 → ∃𝑧 ∈ (𝑋 / )∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧)
87 vex 3454 . . . . 5 𝑧 ∈ V
8887elqs 8741 . . . 4 (𝑧 ∈ (𝑋 / ) ↔ ∃𝑔𝑋 𝑧 = [𝑔] )
89 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑧 = [𝑔] )
9089oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 · 𝑧) = (𝑢 · [𝑔] ))
91 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 · 𝑧) = 𝑧)
92 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝜑)
93 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑢𝐻)
94 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑔𝑋)
957, 10, 4, 17, 57, 16, 58sylow2blem1 19557 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑢𝐻𝑔𝑋) → (𝑢 · [𝑔] ) = [(𝑢 + 𝑔)] )
9692, 93, 94, 95syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 · [𝑔] ) = [(𝑢 + 𝑔)] )
9790, 91, 963eqtr3d 2773 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑧 = [(𝑢 + 𝑔)] )
9889, 97eqtr3d 2767 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → [𝑔] = [(𝑢 + 𝑔)] )
9925ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → Er 𝑋)
10099, 94erth 8728 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 (𝑢 + 𝑔) ↔ [𝑔] = [(𝑢 + 𝑔)] ))
10198, 100mpbird 257 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑔 (𝑢 + 𝑔))
1026ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝐺 ∈ Grp)
10336ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝐾𝑋)
104 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (invg𝐺) = (invg𝐺)
1057, 104, 57, 16eqgval 19116 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → (𝑔 (𝑢 + 𝑔) ↔ (𝑔𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋 ∧ (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾)))
106102, 103, 105syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 (𝑢 + 𝑔) ↔ (𝑔𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋 ∧ (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾)))
107101, 106mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋 ∧ (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾))
108107simp3d 1144 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾)
109 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑥 = (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) → (𝑔 + 𝑥) = (𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))))
110109oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝑥 = (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) → ((𝑔 + 𝑥) 𝑔) = ((𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) 𝑔))
111 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) = (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))
112 ovex 7423 . . . . . . . . . . . . . . . . 17 ((𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) 𝑔) ∈ V
113110, 111, 112fvmpt 6971 . . . . . . . . . . . . . . . 16 ((((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾 → ((𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))‘(((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) = ((𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) 𝑔))
114108, 113syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))‘(((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) = ((𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) 𝑔))
1157, 57, 31, 104grprinv 18929 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝑔𝑋) → (𝑔 + ((invg𝐺)‘𝑔)) = (0g𝐺))
116102, 94, 115syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 + ((invg𝐺)‘𝑔)) = (0g𝐺))
117116oveq1d 7405 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑔 + ((invg𝐺)‘𝑔)) + (𝑢 + 𝑔)) = ((0g𝐺) + (𝑢 + 𝑔)))
1187, 104grpinvcl 18926 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝑔𝑋) → ((invg𝐺)‘𝑔) ∈ 𝑋)
119102, 94, 118syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((invg𝐺)‘𝑔) ∈ 𝑋)
12064ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝐻𝑋)
121120, 93sseldd 3950 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑢𝑋)
1227, 57grpcl 18880 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑔𝑋) → (𝑢 + 𝑔) ∈ 𝑋)
123102, 121, 94, 122syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 + 𝑔) ∈ 𝑋)
1247, 57grpass 18881 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑔𝑋 ∧ ((invg𝐺)‘𝑔) ∈ 𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋)) → ((𝑔 + ((invg𝐺)‘𝑔)) + (𝑢 + 𝑔)) = (𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))))
125102, 94, 119, 123, 124syl13anc 1374 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑔 + ((invg𝐺)‘𝑔)) + (𝑢 + 𝑔)) = (𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))))
1267, 57, 31grplid 18906 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑢 + 𝑔) ∈ 𝑋) → ((0g𝐺) + (𝑢 + 𝑔)) = (𝑢 + 𝑔))
127102, 123, 126syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((0g𝐺) + (𝑢 + 𝑔)) = (𝑢 + 𝑔))
128117, 125, 1273eqtr3d 2773 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) = (𝑢 + 𝑔))
129128oveq1d 7405 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑔 + (((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) 𝑔) = ((𝑢 + 𝑔) 𝑔))
130 sylow2blem3.d . . . . . . . . . . . . . . . . 17 = (-g𝐺)
1317, 57, 130grppncan 18970 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑔𝑋) → ((𝑢 + 𝑔) 𝑔) = 𝑢)
132102, 121, 94, 131syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑢 + 𝑔) 𝑔) = 𝑢)
133114, 129, 1323eqtrd 2769 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))‘(((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) = 𝑢)
134 ovex 7423 . . . . . . . . . . . . . . . 16 ((𝑔 + 𝑥) 𝑔) ∈ V
135134, 111fnmpti 6664 . . . . . . . . . . . . . . 15 (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) Fn 𝐾
136 fnfvelrn 7055 . . . . . . . . . . . . . . 15 (((𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) Fn 𝐾 ∧ (((invg𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾) → ((𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))‘(((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
137135, 108, 136sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))‘(((invg𝐺)‘𝑔) + (𝑢 + 𝑔))) ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
138133, 137eqeltrrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ (𝑢𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑢 ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
139138expr 456 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ 𝑢𝐻) → ((𝑢 · 𝑧) = 𝑧𝑢 ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))))
140139ralimdva 3146 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) → (∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 → ∀𝑢𝐻 𝑢 ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))))
141140imp 406 . . . . . . . . . 10 (((𝜑 ∧ (𝑔𝑋𝑧 = [𝑔] )) ∧ ∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧) → ∀𝑢𝐻 𝑢 ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
142141an32s 652 . . . . . . . . 9 (((𝜑 ∧ ∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧) ∧ (𝑔𝑋𝑧 = [𝑔] )) → ∀𝑢𝐻 𝑢 ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
143 dfss3 3938 . . . . . . . . 9 (𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ↔ ∀𝑢𝐻 𝑢 ∈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
144142, 143sylibr 234 . . . . . . . 8 (((𝜑 ∧ ∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧) ∧ (𝑔𝑋𝑧 = [𝑔] )) → 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
145144expr 456 . . . . . . 7 (((𝜑 ∧ ∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧) ∧ 𝑔𝑋) → (𝑧 = [𝑔] 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))))
146145reximdva 3147 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧) → (∃𝑔𝑋 𝑧 = [𝑔] → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))))
147146ex 412 . . . . 5 (𝜑 → (∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 → (∃𝑔𝑋 𝑧 = [𝑔] → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))))
148147com23 86 . . . 4 (𝜑 → (∃𝑔𝑋 𝑧 = [𝑔] → (∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))))
14988, 148biimtrid 242 . . 3 (𝜑 → (𝑧 ∈ (𝑋 / ) → (∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))))
150149rexlimdv 3133 . 2 (𝜑 → (∃𝑧 ∈ (𝑋 / )∀𝑢𝐻 (𝑢 · 𝑧) = 𝑧 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))))
15186, 150mpd 15 1 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299  𝒫 cpw 4566  {cpr 4594   class class class wbr 5110  {copab 5172  cmpt 5191  ran crn 5642   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392   Er wer 8671  [cec 8672   / cqs 8673  Fincfn 8921  0cc0 11075   · cmul 11080  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cexp 14033  chash 14302  cdvds 16229  cprime 16648   pCnt cpc 16814  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874  SubGrpcsubg 19059   ~QG cqg 19061   pGrp cpgp 19463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-ga 19229  df-od 19465  df-pgp 19467
This theorem is referenced by:  sylow2b  19560
  Copyright terms: Public domain W3C validator