Step | Hyp | Ref
| Expression |
1 | | sylow2blem3.hp |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
2 | | pgpprm 18786 |
. . . . . . . . 9
⊢ (𝑃 pGrp (𝐺 ↾s 𝐻) → 𝑃 ∈ ℙ) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℙ) |
4 | | sylow2b.h |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
5 | | subgrcl 18352 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | | sylow2b.x |
. . . . . . . . . . 11
⊢ 𝑋 = (Base‘𝐺) |
8 | 7 | grpbn0 18200 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
9 | 6, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ≠ ∅) |
10 | | sylow2b.xf |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ Fin) |
11 | | hashnncl 13778 |
. . . . . . . . . 10
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
13 | 9, 12 | mpbird 260 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) |
14 | | pcndvds2 16260 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧
(♯‘𝑋) ∈
ℕ) → ¬ 𝑃
∥ ((♯‘𝑋)
/ (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
15 | 3, 13, 14 | syl2anc 588 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑃 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
16 | | sylow2b.r |
. . . . . . . . . . 11
⊢ ∼ =
(𝐺 ~QG
𝐾) |
17 | | sylow2b.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
18 | 7, 16, 17, 10 | lagsubg2 18409 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) ·
(♯‘𝐾))) |
19 | 18 | oveq1d 7166 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = (((♯‘(𝑋 / ∼ )) ·
(♯‘𝐾)) /
(♯‘𝐾))) |
20 | | sylow2blem3.kn |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
21 | 20 | oveq2d 7167 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑋) / (♯‘𝐾)) = ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
22 | | pwfi 8747 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ Fin ↔ 𝒫
𝑋 ∈
Fin) |
23 | 10, 22 | sylib 221 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
24 | 7, 16 | eqger 18398 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
25 | 17, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∼ Er 𝑋) |
26 | 25 | qsss 8369 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 / ∼ ) ⊆ 𝒫
𝑋) |
27 | 23, 26 | ssfid 8779 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 / ∼ ) ∈
Fin) |
28 | | hashcl 13768 |
. . . . . . . . . . . 12
⊢ ((𝑋 / ∼ ) ∈ Fin →
(♯‘(𝑋 /
∼
)) ∈ ℕ0) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝑋 / ∼ )) ∈
ℕ0) |
30 | 29 | nn0cnd 11997 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝑋 / ∼ )) ∈
ℂ) |
31 | | eqid 2759 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐺) = (0g‘𝐺) |
32 | 31 | subg0cl 18355 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐾) |
33 | 17, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐾) |
34 | 33 | ne0d 4235 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ≠ ∅) |
35 | 7 | subgss 18348 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
36 | 17, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
37 | 10, 36 | ssfid 8779 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Fin) |
38 | | hashnncl 13778 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Fin →
((♯‘𝐾) ∈
ℕ ↔ 𝐾 ≠
∅)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐾) ∈ ℕ ↔ 𝐾 ≠ ∅)) |
40 | 34, 39 | mpbird 260 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐾) ∈
ℕ) |
41 | 40 | nncnd 11691 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐾) ∈
ℂ) |
42 | 40 | nnne0d 11725 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐾) ≠ 0) |
43 | 30, 41, 42 | divcan4d 11461 |
. . . . . . . . 9
⊢ (𝜑 → (((♯‘(𝑋 / ∼ )) ·
(♯‘𝐾)) /
(♯‘𝐾)) =
(♯‘(𝑋 /
∼
))) |
44 | 19, 21, 43 | 3eqtr3d 2802 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (♯‘(𝑋 / ∼
))) |
45 | 44 | breq2d 5045 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ↔ 𝑃 ∥ (♯‘(𝑋 / ∼
)))) |
46 | 15, 45 | mtbid 328 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑃 ∥ (♯‘(𝑋 / ∼
))) |
47 | | prmz 16072 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
48 | 3, 47 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℤ) |
49 | 29 | nn0zd 12125 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝑋 / ∼ )) ∈
ℤ) |
50 | | ssrab2 3985 |
. . . . . . . . . 10
⊢ {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ⊆ (𝑋 / ∼ ) |
51 | | ssfi 8743 |
. . . . . . . . . 10
⊢ (((𝑋 / ∼ ) ∈ Fin ∧
{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ⊆ (𝑋 / ∼ )) → {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin) |
52 | 27, 50, 51 | sylancl 590 |
. . . . . . . . 9
⊢ (𝜑 → {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin) |
53 | | hashcl 13768 |
. . . . . . . . 9
⊢ ({𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin → (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈
ℕ0) |
54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈
ℕ0) |
55 | 54 | nn0zd 12125 |
. . . . . . 7
⊢ (𝜑 → (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈ ℤ) |
56 | | eqid 2759 |
. . . . . . . 8
⊢
(Base‘(𝐺
↾s 𝐻)) =
(Base‘(𝐺
↾s 𝐻)) |
57 | | sylow2b.a |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
58 | | sylow2b.m |
. . . . . . . . 9
⊢ · =
(𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / ∼ ) ↦ ran
(𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
59 | 7, 10, 4, 17, 57, 16, 58 | sylow2blem2 18814 |
. . . . . . . 8
⊢ (𝜑 → · ∈ ((𝐺 ↾s 𝐻) GrpAct (𝑋 / ∼
))) |
60 | | eqid 2759 |
. . . . . . . . . . 11
⊢ (𝐺 ↾s 𝐻) = (𝐺 ↾s 𝐻) |
61 | 60 | subgbas 18351 |
. . . . . . . . . 10
⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺 ↾s 𝐻))) |
62 | 4, 61 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 = (Base‘(𝐺 ↾s 𝐻))) |
63 | 7 | subgss 18348 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
64 | 4, 63 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ⊆ 𝑋) |
65 | 10, 64 | ssfid 8779 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ Fin) |
66 | 62, 65 | eqeltrrd 2854 |
. . . . . . . 8
⊢ (𝜑 → (Base‘(𝐺 ↾s 𝐻)) ∈ Fin) |
67 | | eqid 2759 |
. . . . . . . 8
⊢ {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} = {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} |
68 | | eqid 2759 |
. . . . . . . 8
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑋 / ∼ ) ∧
∃𝑔 ∈
(Base‘(𝐺
↾s 𝐻))(𝑔 · 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑋 / ∼ ) ∧
∃𝑔 ∈
(Base‘(𝐺
↾s 𝐻))(𝑔 · 𝑥) = 𝑦)} |
69 | 56, 59, 1, 66, 27, 67, 68 | sylow2a 18812 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∥ ((♯‘(𝑋 / ∼ )) −
(♯‘{𝑧 ∈
(𝑋 / ∼ )
∣ ∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}))) |
70 | | dvdssub2 15703 |
. . . . . . 7
⊢ (((𝑃 ∈ ℤ ∧
(♯‘(𝑋 /
∼
)) ∈ ℤ ∧ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) ∈ ℤ) ∧ 𝑃 ∥ ((♯‘(𝑋 / ∼ )) −
(♯‘{𝑧 ∈
(𝑋 / ∼ )
∣ ∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}))) → (𝑃 ∥ (♯‘(𝑋 / ∼ )) ↔ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}))) |
71 | 48, 49, 55, 69, 70 | syl31anc 1371 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∥ (♯‘(𝑋 / ∼ )) ↔ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}))) |
72 | 46, 71 | mtbid 328 |
. . . . 5
⊢ (𝜑 → ¬ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧})) |
73 | | hasheq0 13775 |
. . . . . . . 8
⊢ ({𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ∈ Fin → ((♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 ↔ {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} = ∅)) |
74 | 52, 73 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 ↔ {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} = ∅)) |
75 | | dvds0 15674 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 0) |
76 | 48, 75 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∥ 0) |
77 | | breq2 5037 |
. . . . . . . 8
⊢
((♯‘{𝑧
∈ (𝑋 / ∼ )
∣ ∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 → (𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) ↔ 𝑃 ∥ 0)) |
78 | 76, 77 | syl5ibrcom 250 |
. . . . . . 7
⊢ (𝜑 → ((♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) = 0 → 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}))) |
79 | 74, 78 | sylbird 263 |
. . . . . 6
⊢ (𝜑 → ({𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} = ∅ → 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}))) |
80 | 79 | necon3bd 2966 |
. . . . 5
⊢ (𝜑 → (¬ 𝑃 ∥ (♯‘{𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧}) → {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ≠ ∅)) |
81 | 72, 80 | mpd 15 |
. . . 4
⊢ (𝜑 → {𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ≠ ∅) |
82 | | rabn0 4282 |
. . . 4
⊢ ({𝑧 ∈ (𝑋 / ∼ ) ∣
∀𝑢 ∈
(Base‘(𝐺
↾s 𝐻))(𝑢 · 𝑧) = 𝑧} ≠ ∅ ↔ ∃𝑧 ∈ (𝑋 / ∼ )∀𝑢 ∈ (Base‘(𝐺 ↾s 𝐻))(𝑢 · 𝑧) = 𝑧) |
83 | 81, 82 | sylib 221 |
. . 3
⊢ (𝜑 → ∃𝑧 ∈ (𝑋 / ∼ )∀𝑢 ∈ (Base‘(𝐺 ↾s 𝐻))(𝑢 · 𝑧) = 𝑧) |
84 | 62 | raleqdv 3330 |
. . . 4
⊢ (𝜑 → (∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 ↔ ∀𝑢 ∈ (Base‘(𝐺 ↾s 𝐻))(𝑢 · 𝑧) = 𝑧)) |
85 | 84 | rexbidv 3222 |
. . 3
⊢ (𝜑 → (∃𝑧 ∈ (𝑋 / ∼ )∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 ↔ ∃𝑧 ∈ (𝑋 / ∼ )∀𝑢 ∈ (Base‘(𝐺 ↾s 𝐻))(𝑢 · 𝑧) = 𝑧)) |
86 | 83, 85 | mpbird 260 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ (𝑋 / ∼ )∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧) |
87 | | vex 3414 |
. . . . 5
⊢ 𝑧 ∈ V |
88 | 87 | elqs 8360 |
. . . 4
⊢ (𝑧 ∈ (𝑋 / ∼ ) ↔
∃𝑔 ∈ 𝑋 𝑧 = [𝑔] ∼ ) |
89 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑧 = [𝑔] ∼ ) |
90 | 89 | oveq2d 7167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 · 𝑧) = (𝑢 · [𝑔] ∼ )) |
91 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 · 𝑧) = 𝑧) |
92 | | simpll 767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝜑) |
93 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑢 ∈ 𝐻) |
94 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑔 ∈ 𝑋) |
95 | 7, 10, 4, 17, 57, 16, 58 | sylow2blem1 18813 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑔 ∈ 𝑋) → (𝑢 · [𝑔] ∼ ) = [(𝑢 + 𝑔)] ∼ ) |
96 | 92, 93, 94, 95 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 · [𝑔] ∼ ) = [(𝑢 + 𝑔)] ∼ ) |
97 | 90, 91, 96 | 3eqtr3d 2802 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑧 = [(𝑢 + 𝑔)] ∼ ) |
98 | 89, 97 | eqtr3d 2796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → [𝑔] ∼ = [(𝑢 + 𝑔)] ∼ ) |
99 | 25 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ∼ Er 𝑋) |
100 | 99, 94 | erth 8349 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 ∼ (𝑢 + 𝑔) ↔ [𝑔] ∼ = [(𝑢 + 𝑔)] ∼ )) |
101 | 98, 100 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑔 ∼ (𝑢 + 𝑔)) |
102 | 6 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝐺 ∈ Grp) |
103 | 36 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝐾 ⊆ 𝑋) |
104 | | eqid 2759 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(invg‘𝐺) = (invg‘𝐺) |
105 | 7, 104, 57, 16 | eqgval 18397 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧ 𝐾 ⊆ 𝑋) → (𝑔 ∼ (𝑢 + 𝑔) ↔ (𝑔 ∈ 𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾))) |
106 | 102, 103,
105 | syl2anc 588 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 ∼ (𝑢 + 𝑔) ↔ (𝑔 ∈ 𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾))) |
107 | 101, 106 | mpbid 235 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 ∈ 𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾)) |
108 | 107 | simp3d 1142 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾) |
109 | | oveq2 7159 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 =
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) → (𝑔 + 𝑥) = (𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)))) |
110 | 109 | oveq1d 7166 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 =
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) → ((𝑔 + 𝑥) − 𝑔) = ((𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) − 𝑔)) |
111 | | eqid 2759 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) = (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) |
112 | | ovex 7184 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) − 𝑔) ∈ V |
113 | 110, 111,
112 | fvmpt 6760 |
. . . . . . . . . . . . . . . 16
⊢
((((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾 → ((𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))‘(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) = ((𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) − 𝑔)) |
114 | 108, 113 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))‘(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) = ((𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) − 𝑔)) |
115 | 7, 57, 31, 104 | grprinv 18221 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋) → (𝑔 +
((invg‘𝐺)‘𝑔)) = (0g‘𝐺)) |
116 | 102, 94, 115 | syl2anc 588 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 +
((invg‘𝐺)‘𝑔)) = (0g‘𝐺)) |
117 | 116 | oveq1d 7166 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑔 +
((invg‘𝐺)‘𝑔)) + (𝑢 + 𝑔)) = ((0g‘𝐺) + (𝑢 + 𝑔))) |
118 | 7, 104 | grpinvcl 18219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋) → ((invg‘𝐺)‘𝑔) ∈ 𝑋) |
119 | 102, 94, 118 | syl2anc 588 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((invg‘𝐺)‘𝑔) ∈ 𝑋) |
120 | 64 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝐻 ⊆ 𝑋) |
121 | 120, 93 | sseldd 3894 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑢 ∈ 𝑋) |
122 | 7, 57 | grpcl 18178 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → (𝑢 + 𝑔) ∈ 𝑋) |
123 | 102, 121,
94, 122 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑢 + 𝑔) ∈ 𝑋) |
124 | 7, 57 | grpass 18179 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ (𝑔 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑔) ∈ 𝑋 ∧ (𝑢 + 𝑔) ∈ 𝑋)) → ((𝑔 +
((invg‘𝐺)‘𝑔)) + (𝑢 + 𝑔)) = (𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)))) |
125 | 102, 94, 119, 123, 124 | syl13anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑔 +
((invg‘𝐺)‘𝑔)) + (𝑢 + 𝑔)) = (𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)))) |
126 | 7, 57, 31 | grplid 18201 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ (𝑢 + 𝑔) ∈ 𝑋) → ((0g‘𝐺) + (𝑢 + 𝑔)) = (𝑢 + 𝑔)) |
127 | 102, 123,
126 | syl2anc 588 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((0g‘𝐺) + (𝑢 + 𝑔)) = (𝑢 + 𝑔)) |
128 | 117, 125,
127 | 3eqtr3d 2802 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → (𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) = (𝑢 + 𝑔)) |
129 | 128 | oveq1d 7166 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑔 +
(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) − 𝑔) = ((𝑢 + 𝑔) − 𝑔)) |
130 | | sylow2blem3.d |
. . . . . . . . . . . . . . . . 17
⊢ − =
(-g‘𝐺) |
131 | 7, 57, 130 | grppncan 18258 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋) → ((𝑢 + 𝑔) − 𝑔) = 𝑢) |
132 | 102, 121,
94, 131 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑢 + 𝑔) − 𝑔) = 𝑢) |
133 | 114, 129,
132 | 3eqtrd 2798 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))‘(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) = 𝑢) |
134 | | ovex 7184 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 + 𝑥) − 𝑔) ∈ V |
135 | 134, 111 | fnmpti 6475 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) Fn 𝐾 |
136 | | fnfvelrn 6840 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) Fn 𝐾 ∧ (((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔)) ∈ 𝐾) → ((𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))‘(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
137 | 135, 108,
136 | sylancr 591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → ((𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))‘(((invg‘𝐺)‘𝑔) + (𝑢 + 𝑔))) ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
138 | 133, 137 | eqeltrrd 2854 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ (𝑢 ∈ 𝐻 ∧ (𝑢 · 𝑧) = 𝑧)) → 𝑢 ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
139 | 138 | expr 461 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧ 𝑢 ∈ 𝐻) → ((𝑢 · 𝑧) = 𝑧 → 𝑢 ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) |
140 | 139 | ralimdva 3109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) →
(∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 → ∀𝑢 ∈ 𝐻 𝑢 ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) |
141 | 140 | imp 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) ∧
∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧) → ∀𝑢 ∈ 𝐻 𝑢 ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
142 | 141 | an32s 652 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧) ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) →
∀𝑢 ∈ 𝐻 𝑢 ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
143 | | dfss3 3881 |
. . . . . . . . 9
⊢ (𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ↔ ∀𝑢 ∈ 𝐻 𝑢 ∈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
144 | 142, 143 | sylibr 237 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧) ∧ (𝑔 ∈ 𝑋 ∧ 𝑧 = [𝑔] ∼ )) → 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
145 | 144 | expr 461 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧) ∧ 𝑔 ∈ 𝑋) → (𝑧 = [𝑔] ∼ → 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) |
146 | 145 | reximdva 3199 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧) → (∃𝑔 ∈ 𝑋 𝑧 = [𝑔] ∼ → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) |
147 | 146 | ex 417 |
. . . . 5
⊢ (𝜑 → (∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 → (∃𝑔 ∈ 𝑋 𝑧 = [𝑔] ∼ → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))))) |
148 | 147 | com23 86 |
. . . 4
⊢ (𝜑 → (∃𝑔 ∈ 𝑋 𝑧 = [𝑔] ∼ →
(∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))))) |
149 | 88, 148 | syl5bi 245 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝑋 / ∼ ) →
(∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))))) |
150 | 149 | rexlimdv 3208 |
. 2
⊢ (𝜑 → (∃𝑧 ∈ (𝑋 / ∼ )∀𝑢 ∈ 𝐻 (𝑢 · 𝑧) = 𝑧 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) |
151 | 86, 150 | mpd 15 |
1
⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |