MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldsubg Structured version   Visualization version   GIF version

Theorem cldsubg 24119
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
cldsubg.1 𝑅 = (𝐺 ~QG 𝑆)
cldsubg.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
cldsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))

Proof of Theorem cldsubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
2 subgntr.h . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
3 cldsubg.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
42, 3tgptopon 24090 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
51, 4syl 17 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘𝑋))
6 toponuni 22920 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
75, 6syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
87difeq1d 4125 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})))
9 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
10 unisng 4925 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
119, 10syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} = 𝑆)
1211uneq2d 4168 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆))
13 uniun 4930 . . . . . . . 8 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆})
14 undif1 4476 . . . . . . . . . . 11 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ((𝑋 / 𝑅) ∪ {𝑆})
15 cldsubg.1 . . . . . . . . . . . . . . . 16 𝑅 = (𝐺 ~QG 𝑆)
16 eqid 2737 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
173, 15, 16eqgid 19198 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → [(0g𝐺)]𝑅 = 𝑆)
189, 17syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 = 𝑆)
1915ovexi 7465 . . . . . . . . . . . . . . 15 𝑅 ∈ V
20 tgpgrp 24086 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
211, 20syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
223, 16grpidcl 18983 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ 𝑋)
24 ecelqsg 8812 . . . . . . . . . . . . . . 15 ((𝑅 ∈ V ∧ (0g𝐺) ∈ 𝑋) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2519, 23, 24sylancr 587 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2618, 25eqeltrrd 2842 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (𝑋 / 𝑅))
2726snssd 4809 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} ⊆ (𝑋 / 𝑅))
28 ssequn2 4189 . . . . . . . . . . . 12 ({𝑆} ⊆ (𝑋 / 𝑅) ↔ ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
2927, 28sylib 218 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
3014, 29eqtrid 2789 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
3130unieqd 4920 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
323, 15eqger 19196 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑅 Er 𝑋)
339, 32syl 17 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 Er 𝑋)
3419a1i 11 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 ∈ V)
3533, 34uniqs2 8819 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) = 𝑋)
3631, 35eqtrd 2777 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3713, 36eqtr3id 2791 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3812, 37eqtr3d 2779 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋)
39 difss 4136 . . . . . . . . 9 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4039unissi 4916 . . . . . . . 8 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4140, 35sseqtrid 4026 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋)
42 df-ne 2941 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ ¬ 𝑥 = 𝑆)
4333adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑅 Er 𝑋)
44 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑥 ∈ (𝑋 / 𝑅))
4526adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑆 ∈ (𝑋 / 𝑅))
4643, 44, 45qsdisj 8834 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 = 𝑆 ∨ (𝑥𝑆) = ∅))
4746ord 865 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → (𝑥𝑆) = ∅))
48 disj2 4458 . . . . . . . . . . . . . 14 ((𝑥𝑆) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝑆))
4947, 48imbitrdi 251 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆𝑥 ⊆ (V ∖ 𝑆)))
5042, 49biimtrid 242 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥𝑆𝑥 ⊆ (V ∖ 𝑆)))
5150expimpd 453 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆) → 𝑥 ⊆ (V ∖ 𝑆)))
52 eldifsn 4786 . . . . . . . . . . 11 (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) ↔ (𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆))
53 velpw 4605 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (V ∖ 𝑆) ↔ 𝑥 ⊆ (V ∖ 𝑆))
5451, 52, 533imtr4g 296 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) → 𝑥 ∈ 𝒫 (V ∖ 𝑆)))
5554ssrdv 3989 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆))
56 sspwuni 5100 . . . . . . . . 9 (((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆) ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5755, 56sylib 218 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
58 disj2 4458 . . . . . . . 8 (( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅ ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5957, 58sylibr 234 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅)
60 uneqdifeq 4493 . . . . . . 7 (( ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋 ∧ ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6141, 59, 60syl2anc 584 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6238, 61mpbid 232 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
638, 62eqtr3d 2779 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
64 topontop 22919 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
655, 64syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
66 simpl3 1194 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ∈ Fin)
67 diffi 9215 . . . . . . 7 ((𝑋 / 𝑅) ∈ Fin → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
6866, 67syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
69 vex 3484 . . . . . . . . . 10 𝑥 ∈ V
7069elqs 8809 . . . . . . . . 9 (𝑥 ∈ (𝑋 / 𝑅) ↔ ∃𝑦𝑋 𝑥 = [𝑦]𝑅)
71 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
72 subgrcl 19149 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
7371, 72syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝐺 ∈ Grp)
743subgss 19145 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
759, 74syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
7675adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆𝑋)
77 simpr 484 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑦𝑋)
78 eqid 2737 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
793, 15, 78eqglact 19197 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
8073, 76, 77, 79syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
81 simplr 769 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (Clsd‘𝐽))
82 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))
8382, 3, 78, 2tgplacthmeo 24111 . . . . . . . . . . . . . . 15 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
841, 83sylan 580 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
8575, 7sseqtrd 4020 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 𝐽)
8685adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 𝐽)
87 eqid 2737 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
8887hmeocld 23775 . . . . . . . . . . . . . 14 (((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
8984, 86, 88syl2anc 584 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
9081, 89mpbid 232 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))
9180, 90eqeltrd 2841 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 ∈ (Clsd‘𝐽))
92 eleq1 2829 . . . . . . . . . . 11 (𝑥 = [𝑦]𝑅 → (𝑥 ∈ (Clsd‘𝐽) ↔ [𝑦]𝑅 ∈ (Clsd‘𝐽)))
9391, 92syl5ibrcom 247 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9493rexlimdva 3155 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∃𝑦𝑋 𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9570, 94biimtrid 242 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝑋 / 𝑅) → 𝑥 ∈ (Clsd‘𝐽)))
9695ssrdv 3989 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ⊆ (Clsd‘𝐽))
9796ssdifssd 4147 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽))
9887unicld 23054 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
9965, 68, 97, 98syl3anc 1373 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
10087cldopn 23039 . . . . 5 ( ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10199, 100syl 17 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10263, 101eqeltrrd 2842 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝐽)
103102ex 412 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝐽))
1042opnsubg 24116 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
1051043expia 1122 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
1061053adant3 1133 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
107103, 106impbid 212 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   cuni 4907  cmpt 5225  cima 5688  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743   / cqs 8744  Fincfn 8985  Basecbs 17247  +gcplusg 17297  TopOpenctopn 17466  0gc0g 17484  Grpcgrp 18951  SubGrpcsubg 19138   ~QG cqg 19140  Topctop 22899  TopOnctopon 22916  Clsdccld 23024  Homeochmeo 23761  TopGrpctgp 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-topgen 17488  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-eqg 19143  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-tmd 24080  df-tgp 24081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator