MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldsubg Structured version   Visualization version   GIF version

Theorem cldsubg 24026
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
cldsubg.1 𝑅 = (𝐺 ~QG 𝑆)
cldsubg.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
cldsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))

Proof of Theorem cldsubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
2 subgntr.h . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
3 cldsubg.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
42, 3tgptopon 23997 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
51, 4syl 17 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘𝑋))
6 toponuni 22829 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
75, 6syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
87difeq1d 4072 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})))
9 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
10 unisng 4874 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
119, 10syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} = 𝑆)
1211uneq2d 4115 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆))
13 uniun 4879 . . . . . . . 8 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆})
14 undif1 4423 . . . . . . . . . . 11 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ((𝑋 / 𝑅) ∪ {𝑆})
15 cldsubg.1 . . . . . . . . . . . . . . . 16 𝑅 = (𝐺 ~QG 𝑆)
16 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
173, 15, 16eqgid 19092 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → [(0g𝐺)]𝑅 = 𝑆)
189, 17syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 = 𝑆)
1915ovexi 7380 . . . . . . . . . . . . . . 15 𝑅 ∈ V
20 tgpgrp 23993 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
211, 20syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
223, 16grpidcl 18878 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ 𝑋)
24 ecelqsw 8693 . . . . . . . . . . . . . . 15 ((𝑅 ∈ V ∧ (0g𝐺) ∈ 𝑋) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2519, 23, 24sylancr 587 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2618, 25eqeltrrd 2832 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (𝑋 / 𝑅))
2726snssd 4758 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} ⊆ (𝑋 / 𝑅))
28 ssequn2 4136 . . . . . . . . . . . 12 ({𝑆} ⊆ (𝑋 / 𝑅) ↔ ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
2927, 28sylib 218 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
3014, 29eqtrid 2778 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
3130unieqd 4869 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
323, 15eqger 19090 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑅 Er 𝑋)
339, 32syl 17 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 Er 𝑋)
3419a1i 11 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 ∈ V)
3533, 34uniqs2 8701 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) = 𝑋)
3631, 35eqtrd 2766 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3713, 36eqtr3id 2780 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3812, 37eqtr3d 2768 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋)
39 difss 4083 . . . . . . . . 9 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4039unissi 4865 . . . . . . . 8 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4140, 35sseqtrid 3972 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋)
42 df-ne 2929 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ ¬ 𝑥 = 𝑆)
4333adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑅 Er 𝑋)
44 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑥 ∈ (𝑋 / 𝑅))
4526adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑆 ∈ (𝑋 / 𝑅))
4643, 44, 45qsdisj 8718 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 = 𝑆 ∨ (𝑥𝑆) = ∅))
4746ord 864 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → (𝑥𝑆) = ∅))
48 disj2 4405 . . . . . . . . . . . . . 14 ((𝑥𝑆) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝑆))
4947, 48imbitrdi 251 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆𝑥 ⊆ (V ∖ 𝑆)))
5042, 49biimtrid 242 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥𝑆𝑥 ⊆ (V ∖ 𝑆)))
5150expimpd 453 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆) → 𝑥 ⊆ (V ∖ 𝑆)))
52 eldifsn 4735 . . . . . . . . . . 11 (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) ↔ (𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆))
53 velpw 4552 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (V ∖ 𝑆) ↔ 𝑥 ⊆ (V ∖ 𝑆))
5451, 52, 533imtr4g 296 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) → 𝑥 ∈ 𝒫 (V ∖ 𝑆)))
5554ssrdv 3935 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆))
56 sspwuni 5046 . . . . . . . . 9 (((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆) ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5755, 56sylib 218 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
58 disj2 4405 . . . . . . . 8 (( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅ ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5957, 58sylibr 234 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅)
60 uneqdifeq 4440 . . . . . . 7 (( ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋 ∧ ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6141, 59, 60syl2anc 584 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6238, 61mpbid 232 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
638, 62eqtr3d 2768 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
64 topontop 22828 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
655, 64syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
66 simpl3 1194 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ∈ Fin)
67 diffi 9084 . . . . . . 7 ((𝑋 / 𝑅) ∈ Fin → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
6866, 67syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
69 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
7069elqs 8689 . . . . . . . . 9 (𝑥 ∈ (𝑋 / 𝑅) ↔ ∃𝑦𝑋 𝑥 = [𝑦]𝑅)
71 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
72 subgrcl 19044 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
7371, 72syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝐺 ∈ Grp)
743subgss 19040 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
759, 74syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
7675adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆𝑋)
77 simpr 484 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑦𝑋)
78 eqid 2731 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
793, 15, 78eqglact 19091 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
8073, 76, 77, 79syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
81 simplr 768 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (Clsd‘𝐽))
82 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))
8382, 3, 78, 2tgplacthmeo 24018 . . . . . . . . . . . . . . 15 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
841, 83sylan 580 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
8575, 7sseqtrd 3966 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 𝐽)
8685adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 𝐽)
87 eqid 2731 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
8887hmeocld 23682 . . . . . . . . . . . . . 14 (((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
8984, 86, 88syl2anc 584 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
9081, 89mpbid 232 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))
9180, 90eqeltrd 2831 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 ∈ (Clsd‘𝐽))
92 eleq1 2819 . . . . . . . . . . 11 (𝑥 = [𝑦]𝑅 → (𝑥 ∈ (Clsd‘𝐽) ↔ [𝑦]𝑅 ∈ (Clsd‘𝐽)))
9391, 92syl5ibrcom 247 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9493rexlimdva 3133 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∃𝑦𝑋 𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9570, 94biimtrid 242 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝑋 / 𝑅) → 𝑥 ∈ (Clsd‘𝐽)))
9695ssrdv 3935 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ⊆ (Clsd‘𝐽))
9796ssdifssd 4094 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽))
9887unicld 22961 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
9965, 68, 97, 98syl3anc 1373 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
10087cldopn 22946 . . . . 5 ( ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10199, 100syl 17 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10263, 101eqeltrrd 2832 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝐽)
103102ex 412 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝐽))
1042opnsubg 24023 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
1051043expia 1121 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
1061053adant3 1132 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
107103, 106impbid 212 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   cuni 4856  cmpt 5170  cima 5617  cfv 6481  (class class class)co 7346   Er wer 8619  [cec 8620   / cqs 8621  Fincfn 8869  Basecbs 17120  +gcplusg 17161  TopOpenctopn 17325  0gc0g 17343  Grpcgrp 18846  SubGrpcsubg 19033   ~QG cqg 19035  Topctop 22808  TopOnctopon 22825  Clsdccld 22931  Homeochmeo 23668  TopGrpctgp 23986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-topgen 17347  df-plusf 18547  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-eqg 19038  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-tmd 23987  df-tgp 23988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator