MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldsubg Structured version   Visualization version   GIF version

Theorem cldsubg 24033
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
cldsubg.1 𝑅 = (𝐺 ~QG 𝑆)
cldsubg.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
cldsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))

Proof of Theorem cldsubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
2 subgntr.h . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
3 cldsubg.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
42, 3tgptopon 24004 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
51, 4syl 17 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘𝑋))
6 toponuni 22834 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
75, 6syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
87difeq1d 4119 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})))
9 simpl2 1189 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
10 unisng 4930 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
119, 10syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} = 𝑆)
1211uneq2d 4162 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆))
13 uniun 4935 . . . . . . . 8 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆})
14 undif1 4477 . . . . . . . . . . 11 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ((𝑋 / 𝑅) ∪ {𝑆})
15 cldsubg.1 . . . . . . . . . . . . . . . 16 𝑅 = (𝐺 ~QG 𝑆)
16 eqid 2727 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
173, 15, 16eqgid 19140 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → [(0g𝐺)]𝑅 = 𝑆)
189, 17syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 = 𝑆)
1915ovexi 7458 . . . . . . . . . . . . . . 15 𝑅 ∈ V
20 tgpgrp 24000 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
211, 20syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
223, 16grpidcl 18927 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ 𝑋)
24 ecelqsg 8795 . . . . . . . . . . . . . . 15 ((𝑅 ∈ V ∧ (0g𝐺) ∈ 𝑋) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2519, 23, 24sylancr 585 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2618, 25eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (𝑋 / 𝑅))
2726snssd 4815 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} ⊆ (𝑋 / 𝑅))
28 ssequn2 4183 . . . . . . . . . . . 12 ({𝑆} ⊆ (𝑋 / 𝑅) ↔ ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
2927, 28sylib 217 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
3014, 29eqtrid 2779 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
3130unieqd 4923 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
323, 15eqger 19138 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑅 Er 𝑋)
339, 32syl 17 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 Er 𝑋)
3419a1i 11 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 ∈ V)
3533, 34uniqs2 8802 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) = 𝑋)
3631, 35eqtrd 2767 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3713, 36eqtr3id 2781 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3812, 37eqtr3d 2769 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋)
39 difss 4130 . . . . . . . . 9 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4039unissi 4919 . . . . . . . 8 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4140, 35sseqtrid 4032 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋)
42 df-ne 2937 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ ¬ 𝑥 = 𝑆)
4333adantr 479 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑅 Er 𝑋)
44 simpr 483 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑥 ∈ (𝑋 / 𝑅))
4526adantr 479 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑆 ∈ (𝑋 / 𝑅))
4643, 44, 45qsdisj 8817 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 = 𝑆 ∨ (𝑥𝑆) = ∅))
4746ord 862 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → (𝑥𝑆) = ∅))
48 disj2 4459 . . . . . . . . . . . . . 14 ((𝑥𝑆) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝑆))
4947, 48imbitrdi 250 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆𝑥 ⊆ (V ∖ 𝑆)))
5042, 49biimtrid 241 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥𝑆𝑥 ⊆ (V ∖ 𝑆)))
5150expimpd 452 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆) → 𝑥 ⊆ (V ∖ 𝑆)))
52 eldifsn 4793 . . . . . . . . . . 11 (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) ↔ (𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆))
53 velpw 4609 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (V ∖ 𝑆) ↔ 𝑥 ⊆ (V ∖ 𝑆))
5451, 52, 533imtr4g 295 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) → 𝑥 ∈ 𝒫 (V ∖ 𝑆)))
5554ssrdv 3986 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆))
56 sspwuni 5105 . . . . . . . . 9 (((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆) ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5755, 56sylib 217 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
58 disj2 4459 . . . . . . . 8 (( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅ ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5957, 58sylibr 233 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅)
60 uneqdifeq 4494 . . . . . . 7 (( ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋 ∧ ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6141, 59, 60syl2anc 582 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6238, 61mpbid 231 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
638, 62eqtr3d 2769 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
64 topontop 22833 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
655, 64syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
66 simpl3 1190 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ∈ Fin)
67 diffi 9208 . . . . . . 7 ((𝑋 / 𝑅) ∈ Fin → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
6866, 67syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
69 vex 3475 . . . . . . . . . 10 𝑥 ∈ V
7069elqs 8792 . . . . . . . . 9 (𝑥 ∈ (𝑋 / 𝑅) ↔ ∃𝑦𝑋 𝑥 = [𝑦]𝑅)
71 simpll2 1210 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
72 subgrcl 19091 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
7371, 72syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝐺 ∈ Grp)
743subgss 19087 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
759, 74syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
7675adantr 479 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆𝑋)
77 simpr 483 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑦𝑋)
78 eqid 2727 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
793, 15, 78eqglact 19139 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
8073, 76, 77, 79syl3anc 1368 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
81 simplr 767 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (Clsd‘𝐽))
82 eqid 2727 . . . . . . . . . . . . . . . 16 (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))
8382, 3, 78, 2tgplacthmeo 24025 . . . . . . . . . . . . . . 15 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
841, 83sylan 578 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
8575, 7sseqtrd 4020 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 𝐽)
8685adantr 479 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 𝐽)
87 eqid 2727 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
8887hmeocld 23689 . . . . . . . . . . . . . 14 (((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
8984, 86, 88syl2anc 582 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
9081, 89mpbid 231 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))
9180, 90eqeltrd 2828 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 ∈ (Clsd‘𝐽))
92 eleq1 2816 . . . . . . . . . . 11 (𝑥 = [𝑦]𝑅 → (𝑥 ∈ (Clsd‘𝐽) ↔ [𝑦]𝑅 ∈ (Clsd‘𝐽)))
9391, 92syl5ibrcom 246 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9493rexlimdva 3151 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∃𝑦𝑋 𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9570, 94biimtrid 241 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝑋 / 𝑅) → 𝑥 ∈ (Clsd‘𝐽)))
9695ssrdv 3986 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ⊆ (Clsd‘𝐽))
9796ssdifssd 4141 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽))
9887unicld 22968 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
9965, 68, 97, 98syl3anc 1368 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
10087cldopn 22953 . . . . 5 ( ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10199, 100syl 17 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10263, 101eqeltrrd 2829 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝐽)
103102ex 411 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝐽))
1042opnsubg 24030 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
1051043expia 1118 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
1061053adant3 1129 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
107103, 106impbid 211 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  wrex 3066  Vcvv 3471  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4324  𝒫 cpw 4604  {csn 4630   cuni 4910  cmpt 5233  cima 5683  cfv 6551  (class class class)co 7424   Er wer 8726  [cec 8727   / cqs 8728  Fincfn 8968  Basecbs 17185  +gcplusg 17238  TopOpenctopn 17408  0gc0g 17426  Grpcgrp 18895  SubGrpcsubg 19080   ~QG cqg 19082  Topctop 22813  TopOnctopon 22830  Clsdccld 22938  Homeochmeo 23675  TopGrpctgp 23993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-ec 8731  df-qs 8735  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-0g 17428  df-topgen 17430  df-plusf 18604  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-minusg 18899  df-sbg 18900  df-subg 19083  df-eqg 19085  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22867  df-cld 22941  df-cn 23149  df-cnp 23150  df-tx 23484  df-hmeo 23677  df-tmd 23994  df-tgp 23995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator