Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp) |
2 | | subgntr.h |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝐺) |
3 | | cldsubg.2 |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) |
4 | 2, 3 | tgptopon 23141 |
. . . . . . . 8
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘𝑋)) |
6 | | toponuni 21971 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑋 = ∪ 𝐽) |
8 | 7 | difeq1d 4052 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = (∪ 𝐽 ∖ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}))) |
9 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) |
10 | | unisng 4857 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∪ {𝑆}
= 𝑆) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
{𝑆} = 𝑆) |
12 | 11 | uneq2d 4093 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ ∪ {𝑆}) = (∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∪ 𝑆)) |
13 | | uniun 4861 |
. . . . . . . 8
⊢ ∪ (((𝑋
/ 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (∪ ((𝑋 / 𝑅) ∖ {𝑆}) ∪ ∪ {𝑆}) |
14 | | undif1 4406 |
. . . . . . . . . . 11
⊢ (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ((𝑋 / 𝑅) ∪ {𝑆}) |
15 | | cldsubg.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝑅 = (𝐺 ~QG 𝑆) |
16 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐺) = (0g‘𝐺) |
17 | 3, 15, 16 | eqgid 18723 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)]𝑅 = 𝑆) |
18 | 9, 17 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)]𝑅 = 𝑆) |
19 | 15 | ovexi 7289 |
. . . . . . . . . . . . . . 15
⊢ 𝑅 ∈ V |
20 | | tgpgrp 23137 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
21 | 1, 20 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp) |
22 | 3, 16 | grpidcl 18522 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (0g‘𝐺) ∈ 𝑋) |
24 | | ecelqsg 8519 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ V ∧
(0g‘𝐺)
∈ 𝑋) →
[(0g‘𝐺)]𝑅 ∈ (𝑋 / 𝑅)) |
25 | 19, 23, 24 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)]𝑅 ∈ (𝑋 / 𝑅)) |
26 | 18, 25 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (𝑋 / 𝑅)) |
27 | 26 | snssd 4739 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} ⊆ (𝑋 / 𝑅)) |
28 | | ssequn2 4113 |
. . . . . . . . . . . 12
⊢ ({𝑆} ⊆ (𝑋 / 𝑅) ↔ ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅)) |
29 | 27, 28 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅)) |
30 | 14, 29 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅)) |
31 | 30 | unieqd 4850 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
(((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ∪ (𝑋 / 𝑅)) |
32 | 3, 15 | eqger 18721 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑅 Er 𝑋) |
33 | 9, 32 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 Er 𝑋) |
34 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 ∈ V) |
35 | 33, 34 | uniqs2 8526 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
(𝑋 / 𝑅) = 𝑋) |
36 | 31, 35 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
(((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋) |
37 | 13, 36 | eqtr3id 2793 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ ∪ {𝑆}) = 𝑋) |
38 | 12, 37 | eqtr3d 2780 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋) |
39 | | difss 4062 |
. . . . . . . . 9
⊢ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅) |
40 | 39 | unissi 4845 |
. . . . . . . 8
⊢ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ ∪ (𝑋
/ 𝑅) |
41 | 40, 35 | sseqtrid 3969 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋) |
42 | | df-ne 2943 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝑆 ↔ ¬ 𝑥 = 𝑆) |
43 | 33 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑅 Er 𝑋) |
44 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑥 ∈ (𝑋 / 𝑅)) |
45 | 26 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑆 ∈ (𝑋 / 𝑅)) |
46 | 43, 44, 45 | qsdisj 8541 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 = 𝑆 ∨ (𝑥 ∩ 𝑆) = ∅)) |
47 | 46 | ord 860 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → (𝑥 ∩ 𝑆) = ∅)) |
48 | | disj2 4388 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ 𝑆) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝑆)) |
49 | 47, 48 | syl6ib 250 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → 𝑥 ⊆ (V ∖ 𝑆))) |
50 | 42, 49 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 ≠ 𝑆 → 𝑥 ⊆ (V ∖ 𝑆))) |
51 | 50 | expimpd 453 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥 ≠ 𝑆) → 𝑥 ⊆ (V ∖ 𝑆))) |
52 | | eldifsn 4717 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) ↔ (𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥 ≠ 𝑆)) |
53 | | velpw 4535 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 (V ∖
𝑆) ↔ 𝑥 ⊆ (V ∖ 𝑆)) |
54 | 51, 52, 53 | 3imtr4g 295 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) → 𝑥 ∈ 𝒫 (V ∖ 𝑆))) |
55 | 54 | ssrdv 3923 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆)) |
56 | | sspwuni 5025 |
. . . . . . . . 9
⊢ (((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆) ↔ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆)) |
57 | 55, 56 | sylib 217 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆)) |
58 | | disj2 4388 |
. . . . . . . 8
⊢ ((∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅ ↔ ∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆)) |
59 | 57, 58 | sylibr 233 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) |
60 | | uneqdifeq 4420 |
. . . . . . 7
⊢ ((∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ⊆ 𝑋 ∧ (∪ ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) → ((∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)) |
61 | 41, 59, 60 | syl2anc 583 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((∪
((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)) |
62 | 38, 61 | mpbid 231 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ ∪
((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆) |
63 | 8, 62 | eqtr3d 2780 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ ∪ ((𝑋
/ 𝑅) ∖ {𝑆})) = 𝑆) |
64 | | topontop 21970 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
65 | 5, 64 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
66 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ∈ Fin) |
67 | | diffi 8979 |
. . . . . . 7
⊢ ((𝑋 / 𝑅) ∈ Fin → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin) |
68 | 66, 67 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin) |
69 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
70 | 69 | elqs 8516 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋 / 𝑅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = [𝑦]𝑅) |
71 | | simpll2 1211 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) |
72 | | subgrcl 18675 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ Grp) |
74 | 3 | subgss 18671 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
75 | 9, 74 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
76 | 75 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
77 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
78 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝐺) = (+g‘𝐺) |
79 | 3, 15, 78 | eqglact 18722 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋) → [𝑦]𝑅 = ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆)) |
80 | 73, 76, 77, 79 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → [𝑦]𝑅 = ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆)) |
81 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) |
82 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) = (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) |
83 | 82, 3, 78, 2 | tgplacthmeo 23162 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) ∈ (𝐽Homeo𝐽)) |
84 | 1, 83 | sylan 579 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) ∈ (𝐽Homeo𝐽)) |
85 | 75, 7 | sseqtrd 3957 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ ∪ 𝐽) |
86 | 85 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → 𝑆 ⊆ ∪ 𝐽) |
87 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝐽 =
∪ 𝐽 |
88 | 87 | hmeocld 22826 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))) |
89 | 84, 86, 88 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))) |
90 | 81, 89 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)) |
91 | 80, 90 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → [𝑦]𝑅 ∈ (Clsd‘𝐽)) |
92 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ∈ (Clsd‘𝐽) ↔ [𝑦]𝑅 ∈ (Clsd‘𝐽))) |
93 | 91, 92 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ 𝑋) → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ (Clsd‘𝐽))) |
94 | 93 | rexlimdva 3212 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∃𝑦 ∈ 𝑋 𝑥 = [𝑦]𝑅 → 𝑥 ∈ (Clsd‘𝐽))) |
95 | 70, 94 | syl5bi 241 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝑋 / 𝑅) → 𝑥 ∈ (Clsd‘𝐽))) |
96 | 95 | ssrdv 3923 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ⊆ (Clsd‘𝐽)) |
97 | 96 | ssdifssd 4073 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) |
98 | 87 | unicld 22105 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽)) |
99 | 65, 68, 97, 98 | syl3anc 1369 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∪
((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽)) |
100 | 87 | cldopn 22090 |
. . . . 5
⊢ (∪ ((𝑋
/ 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ ∪ ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽) |
101 | 99, 100 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ ∪ ((𝑋
/ 𝑅) ∖ {𝑆})) ∈ 𝐽) |
102 | 63, 101 | eqeltrrd 2840 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ 𝐽) |
103 | 102 | ex 412 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ∈ 𝐽)) |
104 | 2 | opnsubg 23167 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) |
105 | 104 | 3expia 1119 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 ∈ 𝐽 → 𝑆 ∈ (Clsd‘𝐽))) |
106 | 105 | 3adant3 1130 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ 𝐽 → 𝑆 ∈ (Clsd‘𝐽))) |
107 | 103, 106 | impbid 211 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) |