MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldsubg Structured version   Visualization version   GIF version

Theorem cldsubg 23974
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
cldsubg.1 𝑅 = (𝐺 ~QG 𝑆)
cldsubg.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
cldsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))

Proof of Theorem cldsubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
2 subgntr.h . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
3 cldsubg.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
42, 3tgptopon 23945 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
51, 4syl 17 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘𝑋))
6 toponuni 22777 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
75, 6syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
87difeq1d 4084 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})))
9 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
10 unisng 4885 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
119, 10syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} = 𝑆)
1211uneq2d 4127 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆))
13 uniun 4890 . . . . . . . 8 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆})
14 undif1 4435 . . . . . . . . . . 11 (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = ((𝑋 / 𝑅) ∪ {𝑆})
15 cldsubg.1 . . . . . . . . . . . . . . . 16 𝑅 = (𝐺 ~QG 𝑆)
16 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
173, 15, 16eqgid 19088 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → [(0g𝐺)]𝑅 = 𝑆)
189, 17syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 = 𝑆)
1915ovexi 7403 . . . . . . . . . . . . . . 15 𝑅 ∈ V
20 tgpgrp 23941 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
211, 20syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
223, 16grpidcl 18873 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ 𝑋)
24 ecelqsw 8719 . . . . . . . . . . . . . . 15 ((𝑅 ∈ V ∧ (0g𝐺) ∈ 𝑋) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2519, 23, 24sylancr 587 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → [(0g𝐺)]𝑅 ∈ (𝑋 / 𝑅))
2618, 25eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ∈ (𝑋 / 𝑅))
2726snssd 4769 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → {𝑆} ⊆ (𝑋 / 𝑅))
28 ssequn2 4148 . . . . . . . . . . . 12 ({𝑆} ⊆ (𝑋 / 𝑅) ↔ ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
2927, 28sylib 218 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∪ {𝑆}) = (𝑋 / 𝑅))
3014, 29eqtrid 2776 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
3130unieqd 4880 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = (𝑋 / 𝑅))
323, 15eqger 19086 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑅 Er 𝑋)
339, 32syl 17 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 Er 𝑋)
3419a1i 11 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑅 ∈ V)
3533, 34uniqs2 8727 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) = 𝑋)
3631, 35eqtrd 2764 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3713, 36eqtr3id 2778 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ {𝑆}) = 𝑋)
3812, 37eqtr3d 2766 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋)
39 difss 4095 . . . . . . . . 9 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4039unissi 4876 . . . . . . . 8 ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (𝑋 / 𝑅)
4140, 35sseqtrid 3986 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋)
42 df-ne 2926 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ ¬ 𝑥 = 𝑆)
4333adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑅 Er 𝑋)
44 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑥 ∈ (𝑋 / 𝑅))
4526adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → 𝑆 ∈ (𝑋 / 𝑅))
4643, 44, 45qsdisj 8744 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥 = 𝑆 ∨ (𝑥𝑆) = ∅))
4746ord 864 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆 → (𝑥𝑆) = ∅))
48 disj2 4417 . . . . . . . . . . . . . 14 ((𝑥𝑆) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝑆))
4947, 48imbitrdi 251 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (¬ 𝑥 = 𝑆𝑥 ⊆ (V ∖ 𝑆)))
5042, 49biimtrid 242 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (𝑋 / 𝑅)) → (𝑥𝑆𝑥 ⊆ (V ∖ 𝑆)))
5150expimpd 453 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆) → 𝑥 ⊆ (V ∖ 𝑆)))
52 eldifsn 4746 . . . . . . . . . . 11 (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) ↔ (𝑥 ∈ (𝑋 / 𝑅) ∧ 𝑥𝑆))
53 velpw 4564 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (V ∖ 𝑆) ↔ 𝑥 ⊆ (V ∖ 𝑆))
5451, 52, 533imtr4g 296 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝑋 / 𝑅) ∖ {𝑆}) → 𝑥 ∈ 𝒫 (V ∖ 𝑆)))
5554ssrdv 3949 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆))
56 sspwuni 5059 . . . . . . . . 9 (((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝒫 (V ∖ 𝑆) ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5755, 56sylib 218 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
58 disj2 4417 . . . . . . . 8 (( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅ ↔ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (V ∖ 𝑆))
5957, 58sylibr 234 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅)
60 uneqdifeq 4452 . . . . . . 7 (( ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ 𝑋 ∧ ( ((𝑋 / 𝑅) ∖ {𝑆}) ∩ 𝑆) = ∅) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6141, 59, 60syl2anc 584 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (( ((𝑋 / 𝑅) ∖ {𝑆}) ∪ 𝑆) = 𝑋 ↔ (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆))
6238, 61mpbid 232 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
638, 62eqtr3d 2766 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) = 𝑆)
64 topontop 22776 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
655, 64syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
66 simpl3 1194 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ∈ Fin)
67 diffi 9116 . . . . . . 7 ((𝑋 / 𝑅) ∈ Fin → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
6866, 67syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin)
69 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
7069elqs 8715 . . . . . . . . 9 (𝑥 ∈ (𝑋 / 𝑅) ↔ ∃𝑦𝑋 𝑥 = [𝑦]𝑅)
71 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
72 subgrcl 19039 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
7371, 72syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝐺 ∈ Grp)
743subgss 19035 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
759, 74syl 17 . . . . . . . . . . . . . 14 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
7675adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆𝑋)
77 simpr 484 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑦𝑋)
78 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
793, 15, 78eqglact 19087 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
8073, 76, 77, 79syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 = ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆))
81 simplr 768 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 ∈ (Clsd‘𝐽))
82 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))
8382, 3, 78, 2tgplacthmeo 23966 . . . . . . . . . . . . . . 15 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
841, 83sylan 580 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
8575, 7sseqtrd 3980 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 𝐽)
8685adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → 𝑆 𝐽)
87 eqid 2729 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
8887hmeocld 23630 . . . . . . . . . . . . . 14 (((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
8984, 86, 88syl2anc 584 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽)))
9081, 89mpbid 232 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → ((𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)) “ 𝑆) ∈ (Clsd‘𝐽))
9180, 90eqeltrd 2828 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → [𝑦]𝑅 ∈ (Clsd‘𝐽))
92 eleq1 2816 . . . . . . . . . . 11 (𝑥 = [𝑦]𝑅 → (𝑥 ∈ (Clsd‘𝐽) ↔ [𝑦]𝑅 ∈ (Clsd‘𝐽)))
9391, 92syl5ibrcom 247 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑦𝑋) → (𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9493rexlimdva 3134 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (∃𝑦𝑋 𝑥 = [𝑦]𝑅𝑥 ∈ (Clsd‘𝐽)))
9570, 94biimtrid 242 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝑋 / 𝑅) → 𝑥 ∈ (Clsd‘𝐽)))
9695ssrdv 3949 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 / 𝑅) ⊆ (Clsd‘𝐽))
9796ssdifssd 4106 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽))
9887unicld 22909 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ∈ Fin ∧ ((𝑋 / 𝑅) ∖ {𝑆}) ⊆ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
9965, 68, 97, 98syl3anc 1373 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽))
10087cldopn 22894 . . . . 5 ( ((𝑋 / 𝑅) ∖ {𝑆}) ∈ (Clsd‘𝐽) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10199, 100syl 17 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽 ((𝑋 / 𝑅) ∖ {𝑆})) ∈ 𝐽)
10263, 101eqeltrrd 2829 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝐽)
103102ex 412 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝐽))
1042opnsubg 23971 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
1051043expia 1121 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
1061053adant3 1132 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆𝐽𝑆 ∈ (Clsd‘𝐽)))
107103, 106impbid 212 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cuni 4867  cmpt 5183  cima 5634  cfv 6499  (class class class)co 7369   Er wer 8645  [cec 8646   / cqs 8647  Fincfn 8895  Basecbs 17155  +gcplusg 17196  TopOpenctopn 17360  0gc0g 17378  Grpcgrp 18841  SubGrpcsubg 19028   ~QG cqg 19030  Topctop 22756  TopOnctopon 22773  Clsdccld 22879  Homeochmeo 23616  TopGrpctgp 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-topgen 17382  df-plusf 18542  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-eqg 19033  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-tmd 23935  df-tgp 23936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator