![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsid | Structured version Visualization version GIF version |
Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsid | ⊢ (𝐴 / ◡ E ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | ecid 8821 | . . . . . 6 ⊢ [𝑥]◡ E = 𝑥 |
3 | 2 | eqeq2i 2748 | . . . . 5 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑦 = 𝑥) |
4 | equcom 2015 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑥 = 𝑦) |
6 | 5 | rexbii 3092 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) |
7 | vex 3482 | . . . 4 ⊢ 𝑦 ∈ V | |
8 | 7 | elqs 8808 | . . 3 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ) |
9 | risset 3231 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
10 | 6, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ 𝑦 ∈ 𝐴) |
11 | 10 | eqriv 2732 | 1 ⊢ (𝐴 / ◡ E ) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∃wrex 3068 E cep 5588 ◡ccnv 5688 [cec 8742 / cqs 8743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-eprel 5589 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-qs 8750 |
This theorem is referenced by: dfcnqs 11180 cnvepima 38319 n0elim 38632 |
Copyright terms: Public domain | W3C validator |