MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsid Structured version   Visualization version   GIF version

Theorem qsid 8161
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid (𝐴 / E ) = 𝐴

Proof of Theorem qsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3411 . . . . . . 7 𝑥 ∈ V
21ecid 8160 . . . . . 6 [𝑥] E = 𝑥
32eqeq2i 2783 . . . . 5 (𝑦 = [𝑥] E ↔ 𝑦 = 𝑥)
4 equcom 1976 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
53, 4bitri 267 . . . 4 (𝑦 = [𝑥] E ↔ 𝑥 = 𝑦)
65rexbii 3187 . . 3 (∃𝑥𝐴 𝑦 = [𝑥] E ↔ ∃𝑥𝐴 𝑥 = 𝑦)
7 vex 3411 . . . 4 𝑦 ∈ V
87elqs 8147 . . 3 (𝑦 ∈ (𝐴 / E ) ↔ ∃𝑥𝐴 𝑦 = [𝑥] E )
9 risset 3206 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
106, 8, 93bitr4i 295 . 2 (𝑦 ∈ (𝐴 / E ) ↔ 𝑦𝐴)
1110eqriv 2768 1 (𝐴 / E ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  wcel 2051  wrex 3082   E cep 5312  ccnv 5402  [cec 8085   / cqs 8086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926  df-opab 4988  df-eprel 5313  df-xp 5409  df-cnv 5411  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-ec 8089  df-qs 8093
This theorem is referenced by:  dfcnqs  10360  cnvepima  35076  n0el3  35367
  Copyright terms: Public domain W3C validator