MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsid Structured version   Visualization version   GIF version

Theorem qsid 8700
Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid (𝐴 / E ) = 𝐴

Proof of Theorem qsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3438 . . . . . . 7 𝑥 ∈ V
21ecid 8699 . . . . . 6 [𝑥] E = 𝑥
32eqeq2i 2743 . . . . 5 (𝑦 = [𝑥] E ↔ 𝑦 = 𝑥)
4 equcom 2019 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
53, 4bitri 275 . . . 4 (𝑦 = [𝑥] E ↔ 𝑥 = 𝑦)
65rexbii 3077 . . 3 (∃𝑥𝐴 𝑦 = [𝑥] E ↔ ∃𝑥𝐴 𝑥 = 𝑦)
7 vex 3438 . . . 4 𝑦 ∈ V
87elqs 8684 . . 3 (𝑦 ∈ (𝐴 / E ) ↔ ∃𝑥𝐴 𝑦 = [𝑥] E )
9 risset 3205 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
106, 8, 93bitr4i 303 . 2 (𝑦 ∈ (𝐴 / E ) ↔ 𝑦𝐴)
1110eqriv 2727 1 (𝐴 / E ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  wrex 3054   E cep 5513  ccnv 5613  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8619  df-qs 8623
This theorem is referenced by:  dfcnqs  11025  cnvepima  38344  n0elim  38667
  Copyright terms: Public domain W3C validator