MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsid Structured version   Visualization version   GIF version

Theorem qsid 8757
Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid (𝐴 / E ) = 𝐴

Proof of Theorem qsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . . 7 𝑥 ∈ V
21ecid 8756 . . . . . 6 [𝑥] E = 𝑥
32eqeq2i 2743 . . . . 5 (𝑦 = [𝑥] E ↔ 𝑦 = 𝑥)
4 equcom 2018 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
53, 4bitri 275 . . . 4 (𝑦 = [𝑥] E ↔ 𝑥 = 𝑦)
65rexbii 3077 . . 3 (∃𝑥𝐴 𝑦 = [𝑥] E ↔ ∃𝑥𝐴 𝑥 = 𝑦)
7 vex 3454 . . . 4 𝑦 ∈ V
87elqs 8741 . . 3 (𝑦 ∈ (𝐴 / E ) ↔ ∃𝑥𝐴 𝑦 = [𝑥] E )
9 risset 3213 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
106, 8, 93bitr4i 303 . 2 (𝑦 ∈ (𝐴 / E ) ↔ 𝑦𝐴)
1110eqriv 2727 1 (𝐴 / E ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3054   E cep 5540  ccnv 5640  [cec 8672   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680
This theorem is referenced by:  dfcnqs  11102  cnvepima  38326  n0elim  38649
  Copyright terms: Public domain W3C validator