| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsid | Structured version Visualization version GIF version | ||
| Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsid | ⊢ (𝐴 / ◡ E ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ecid 8713 | . . . . . 6 ⊢ [𝑥]◡ E = 𝑥 |
| 3 | 2 | eqeq2i 2746 | . . . . 5 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑦 = 𝑥) |
| 4 | equcom 2019 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑥 = 𝑦) |
| 6 | 5 | rexbii 3081 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) |
| 7 | vex 3442 | . . . 4 ⊢ 𝑦 ∈ V | |
| 8 | 7 | elqs 8698 | . . 3 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ) |
| 9 | risset 3209 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
| 10 | 6, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ 𝑦 ∈ 𝐴) |
| 11 | 10 | eqriv 2730 | 1 ⊢ (𝐴 / ◡ E ) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∃wrex 3058 E cep 5520 ◡ccnv 5620 [cec 8629 / cqs 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 |
| This theorem is referenced by: dfcnqs 11043 cnvepima 38379 n0elim 38758 |
| Copyright terms: Public domain | W3C validator |