MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsid Structured version   Visualization version   GIF version

Theorem qsid 8465
Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid (𝐴 / E ) = 𝐴

Proof of Theorem qsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3412 . . . . . . 7 𝑥 ∈ V
21ecid 8464 . . . . . 6 [𝑥] E = 𝑥
32eqeq2i 2750 . . . . 5 (𝑦 = [𝑥] E ↔ 𝑦 = 𝑥)
4 equcom 2026 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
53, 4bitri 278 . . . 4 (𝑦 = [𝑥] E ↔ 𝑥 = 𝑦)
65rexbii 3170 . . 3 (∃𝑥𝐴 𝑦 = [𝑥] E ↔ ∃𝑥𝐴 𝑥 = 𝑦)
7 vex 3412 . . . 4 𝑦 ∈ V
87elqs 8451 . . 3 (𝑦 ∈ (𝐴 / E ) ↔ ∃𝑥𝐴 𝑦 = [𝑥] E )
9 risset 3186 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
106, 8, 93bitr4i 306 . 2 (𝑦 ∈ (𝐴 / E ) ↔ 𝑦𝐴)
1110eqriv 2734 1 (𝐴 / E ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  wrex 3062   E cep 5459  ccnv 5550  [cec 8389   / cqs 8390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-eprel 5460  df-xp 5557  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ec 8393  df-qs 8397
This theorem is referenced by:  dfcnqs  10756  cnvepima  36209  n0el3  36500
  Copyright terms: Public domain W3C validator