| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsid | Structured version Visualization version GIF version | ||
| Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsid | ⊢ (𝐴 / ◡ E ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ecid 8756 | . . . . . 6 ⊢ [𝑥]◡ E = 𝑥 |
| 3 | 2 | eqeq2i 2743 | . . . . 5 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑦 = 𝑥) |
| 4 | equcom 2018 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑥 = 𝑦) |
| 6 | 5 | rexbii 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) |
| 7 | vex 3454 | . . . 4 ⊢ 𝑦 ∈ V | |
| 8 | 7 | elqs 8741 | . . 3 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ) |
| 9 | risset 3213 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
| 10 | 6, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ 𝑦 ∈ 𝐴) |
| 11 | 10 | eqriv 2727 | 1 ⊢ (𝐴 / ◡ E ) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3054 E cep 5540 ◡ccnv 5640 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 |
| This theorem is referenced by: dfcnqs 11102 cnvepima 38326 n0elim 38649 |
| Copyright terms: Public domain | W3C validator |