Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qsid | Structured version Visualization version GIF version |
Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsid | ⊢ (𝐴 / ◡ E ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | ecid 8571 | . . . . . 6 ⊢ [𝑥]◡ E = 𝑥 |
3 | 2 | eqeq2i 2751 | . . . . 5 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑦 = 𝑥) |
4 | equcom 2021 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
5 | 3, 4 | bitri 274 | . . . 4 ⊢ (𝑦 = [𝑥]◡ E ↔ 𝑥 = 𝑦) |
6 | 5 | rexbii 3181 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) |
7 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
8 | 7 | elqs 8558 | . . 3 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]◡ E ) |
9 | risset 3194 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
10 | 6, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ (𝐴 / ◡ E ) ↔ 𝑦 ∈ 𝐴) |
11 | 10 | eqriv 2735 | 1 ⊢ (𝐴 / ◡ E ) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∃wrex 3065 E cep 5494 ◡ccnv 5588 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: dfcnqs 10898 cnvepima 36472 n0el3 36763 |
Copyright terms: Public domain | W3C validator |