![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqsi | Structured version Visualization version GIF version |
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elqsi | ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg 8826 | . 2 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 [cec 8761 / cqs 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-qs 8769 |
This theorem is referenced by: ectocld 8842 ecoptocl 8865 eroveu 8870 ghmqusker 19327 elrlocbasi 33238 nsgqusf1olem2 33407 qsidomlem2 33446 opprqusplusg 33482 opprqusmulr 33484 qsdrngi 33488 qsdrnglem2 33489 pstmxmet 33843 |
Copyright terms: Public domain | W3C validator |