| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqsi | Structured version Visualization version GIF version | ||
| Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elqsi | ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg 8696 | . 2 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 [cec 8628 / cqs 8629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-qs 8636 |
| This theorem is referenced by: ectocld 8714 ecoptocl 8739 eroveu 8744 ghmqusker 19203 elrlocbasi 33242 nsgqusf1olem2 33388 qsidomlem2 33427 opprqusplusg 33463 opprqusmulr 33465 qsdrngi 33469 qsdrnglem2 33470 pstmxmet 33933 |
| Copyright terms: Public domain | W3C validator |