MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsi Structured version   Visualization version   GIF version

Theorem elqsi 8808
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 8806 . 2 (𝐵 ∈ (𝐴 / 𝑅) → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
21ibi 267 1 (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wrex 3067  [cec 8741   / cqs 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rex 3068  df-qs 8749
This theorem is referenced by:  ectocld  8822  ecoptocl  8845  eroveu  8850  ghmqusker  19317  elrlocbasi  33252  nsgqusf1olem2  33421  qsidomlem2  33460  opprqusplusg  33496  opprqusmulr  33498  qsdrngi  33502  qsdrnglem2  33503  pstmxmet  33857
  Copyright terms: Public domain W3C validator