MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsi Structured version   Visualization version   GIF version

Theorem elqsi 8698
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 8696 . 2 (𝐵 ∈ (𝐴 / 𝑅) → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
21ibi 267 1 (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wrex 3057  [cec 8628   / cqs 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-qs 8636
This theorem is referenced by:  ectocld  8714  ecoptocl  8739  eroveu  8744  ghmqusker  19203  elrlocbasi  33242  nsgqusf1olem2  33388  qsidomlem2  33427  opprqusplusg  33463  opprqusmulr  33465  qsdrngi  33469  qsdrnglem2  33470  pstmxmet  33933
  Copyright terms: Public domain W3C validator