| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqsi | Structured version Visualization version GIF version | ||
| Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elqsi | ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg 8782 | . 2 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 [cec 8717 / cqs 8718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-qs 8725 |
| This theorem is referenced by: ectocld 8798 ecoptocl 8821 eroveu 8826 ghmqusker 19270 elrlocbasi 33261 nsgqusf1olem2 33429 qsidomlem2 33468 opprqusplusg 33504 opprqusmulr 33506 qsdrngi 33510 qsdrnglem2 33511 pstmxmet 33928 |
| Copyright terms: Public domain | W3C validator |