MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsss Structured version   Visualization version   GIF version

Theorem qsss 8749
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
Assertion
Ref Expression
qsss (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)

Proof of Theorem qsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . 4 𝑥 ∈ V
21elqs 8738 . . 3 (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦𝐴 𝑥 = [𝑦]𝑅)
3 qsss.1 . . . . . . 7 (𝜑𝑅 Er 𝐴)
43ecss 8722 . . . . . 6 (𝜑 → [𝑦]𝑅𝐴)
5 sseq1 3972 . . . . . 6 (𝑥 = [𝑦]𝑅 → (𝑥𝐴 ↔ [𝑦]𝑅𝐴))
64, 5syl5ibrcom 247 . . . . 5 (𝜑 → (𝑥 = [𝑦]𝑅𝑥𝐴))
7 velpw 4568 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
86, 7imbitrrdi 252 . . . 4 (𝜑 → (𝑥 = [𝑦]𝑅𝑥 ∈ 𝒫 𝐴))
98rexlimdvw 3139 . . 3 (𝜑 → (∃𝑦𝐴 𝑥 = [𝑦]𝑅𝑥 ∈ 𝒫 𝐴))
102, 9biimtrid 242 . 2 (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴))
1110ssrdv 3952 1 (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  wss 3914  𝒫 cpw 4563   Er wer 8668  [cec 8669   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-er 8671  df-ec 8673  df-qs 8677
This theorem is referenced by:  nrex1  11017  wuncn  11123  qshash  15793  lagsubg2  19126  lagsubg  19127  ghmqusnsg  19214  ghmquskerlem3  19218  ghmqusker  19219  orbsta2  19246  sylow1lem3  19530  sylow2alem2  19548  sylow2a  19549  sylow2blem2  19551  sylow2blem3  19552  sylow3lem3  19559  sylow3lem4  19560  rhmqusnsg  21195  vitalilem5  25513  vitali  25514  qerclwwlknfi  30002  lmhmqusker  33388  rhmquskerlem  33396  prjspnssbas  42609
  Copyright terms: Public domain W3C validator