| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsss | Structured version Visualization version GIF version | ||
| Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Ref | Expression |
|---|---|
| qsss | ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elqs 8692 | . . 3 ⊢ (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅) |
| 3 | qsss.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 4 | 3 | ecss 8676 | . . . . . 6 ⊢ (𝜑 → [𝑦]𝑅 ⊆ 𝐴) |
| 5 | sseq1 3961 | . . . . . 6 ⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ⊆ 𝐴 ↔ [𝑦]𝑅 ⊆ 𝐴)) | |
| 6 | 4, 5 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ⊆ 𝐴)) |
| 7 | velpw 4556 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 8 | 6, 7 | imbitrrdi 252 | . . . 4 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
| 9 | 8 | rexlimdvw 3135 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
| 10 | 2, 9 | biimtrid 242 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴)) |
| 11 | 10 | ssrdv 3941 | 1 ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 𝒫 cpw 4551 Er wer 8622 [cec 8623 / cqs 8624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-er 8625 df-ec 8627 df-qs 8631 |
| This theorem is referenced by: nrex1 10958 wuncn 11064 qshash 15734 lagsubg2 19073 lagsubg 19074 ghmqusnsg 19161 ghmquskerlem3 19165 ghmqusker 19166 orbsta2 19193 sylow1lem3 19479 sylow2alem2 19497 sylow2a 19498 sylow2blem2 19500 sylow2blem3 19501 sylow3lem3 19508 sylow3lem4 19509 rhmqusnsg 21192 vitalilem5 25511 vitali 25512 qerclwwlknfi 30017 lmhmqusker 33355 rhmquskerlem 33363 prjspnssbas 42604 |
| Copyright terms: Public domain | W3C validator |