MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsss Structured version   Visualization version   GIF version

Theorem qsss 8541
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
Assertion
Ref Expression
qsss (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)

Proof of Theorem qsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3434 . . . 4 𝑥 ∈ V
21elqs 8532 . . 3 (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦𝐴 𝑥 = [𝑦]𝑅)
3 qsss.1 . . . . . . 7 (𝜑𝑅 Er 𝐴)
43ecss 8518 . . . . . 6 (𝜑 → [𝑦]𝑅𝐴)
5 sseq1 3950 . . . . . 6 (𝑥 = [𝑦]𝑅 → (𝑥𝐴 ↔ [𝑦]𝑅𝐴))
64, 5syl5ibrcom 246 . . . . 5 (𝜑 → (𝑥 = [𝑦]𝑅𝑥𝐴))
7 velpw 4543 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
86, 7syl6ibr 251 . . . 4 (𝜑 → (𝑥 = [𝑦]𝑅𝑥 ∈ 𝒫 𝐴))
98rexlimdvw 3220 . . 3 (𝜑 → (∃𝑦𝐴 𝑥 = [𝑦]𝑅𝑥 ∈ 𝒫 𝐴))
102, 9syl5bi 241 . 2 (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴))
1110ssrdv 3931 1 (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wrex 3066  wss 3891  𝒫 cpw 4538   Er wer 8469  [cec 8470   / cqs 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-er 8472  df-ec 8474  df-qs 8478
This theorem is referenced by:  nrex1  10804  wuncn  10910  qshash  15520  lagsubg2  18798  lagsubg  18799  orbsta2  18901  sylow1lem3  19186  sylow2alem2  19204  sylow2a  19205  sylow2blem2  19207  sylow2blem3  19208  sylow3lem3  19215  sylow3lem4  19216  vitalilem5  24757  vitali  24758  qerclwwlknfi  28416
  Copyright terms: Public domain W3C validator