![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcsect2 | Structured version Visualization version GIF version |
Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
oppcsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
oppcsect.t | ⊢ 𝑇 = (Sect‘𝑂) |
Ref | Expression |
---|---|
oppcsect2 | ⊢ (𝜑 → (𝑋𝑇𝑌) = ◡(𝑋𝑆𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcsect.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | oppcsect.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 17777 | . . . 4 ⊢ 𝐵 = (Base‘𝑂) |
4 | eqid 2740 | . . . 4 ⊢ (Hom ‘𝑂) = (Hom ‘𝑂) | |
5 | eqid 2740 | . . . 4 ⊢ (comp‘𝑂) = (comp‘𝑂) | |
6 | eqid 2740 | . . . 4 ⊢ (Id‘𝑂) = (Id‘𝑂) | |
7 | oppcsect.t | . . . 4 ⊢ 𝑇 = (Sect‘𝑂) | |
8 | oppcsect.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
9 | 1 | oppccat 17782 | . . . . 5 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Cat) |
11 | oppcsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | oppcsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 3, 4, 5, 6, 7, 10, 11, 12 | sectss 17813 | . . 3 ⊢ (𝜑 → (𝑋𝑇𝑌) ⊆ ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋))) |
14 | relxp 5718 | . . 3 ⊢ Rel ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋)) | |
15 | relss 5805 | . . 3 ⊢ ((𝑋𝑇𝑌) ⊆ ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋)) → (Rel ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋)) → Rel (𝑋𝑇𝑌))) | |
16 | 13, 14, 15 | mpisyl 21 | . 2 ⊢ (𝜑 → Rel (𝑋𝑇𝑌)) |
17 | relcnv 6134 | . . 3 ⊢ Rel ◡(𝑋𝑆𝑌) | |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → Rel ◡(𝑋𝑆𝑌)) |
19 | oppcsect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
20 | 2, 1, 8, 11, 12, 19, 7 | oppcsect 17839 | . . 3 ⊢ (𝜑 → (𝑓(𝑋𝑇𝑌)𝑔 ↔ 𝑔(𝑋𝑆𝑌)𝑓)) |
21 | vex 3492 | . . . 4 ⊢ 𝑓 ∈ V | |
22 | vex 3492 | . . . 4 ⊢ 𝑔 ∈ V | |
23 | 21, 22 | brcnv 5907 | . . 3 ⊢ (𝑓◡(𝑋𝑆𝑌)𝑔 ↔ 𝑔(𝑋𝑆𝑌)𝑓) |
24 | 20, 23 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(𝑋𝑇𝑌)𝑔 ↔ 𝑓◡(𝑋𝑆𝑌)𝑔)) |
25 | 16, 18, 24 | eqbrrdv 5817 | 1 ⊢ (𝜑 → (𝑋𝑇𝑌) = ◡(𝑋𝑆𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 oppCatcoppc 17769 Sectcsect 17805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-oppc 17770 df-sect 17808 |
This theorem is referenced by: oppcinv 17841 |
Copyright terms: Public domain | W3C validator |