| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcsect2 | Structured version Visualization version GIF version | ||
| Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| oppcsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| oppcsect.t | ⊢ 𝑇 = (Sect‘𝑂) |
| Ref | Expression |
|---|---|
| oppcsect2 | ⊢ (𝜑 → (𝑋𝑇𝑌) = ◡(𝑋𝑆𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | oppcsect.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 1, 2 | oppcbas 17619 | . . . 4 ⊢ 𝐵 = (Base‘𝑂) |
| 4 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝑂) = (Hom ‘𝑂) | |
| 5 | eqid 2731 | . . . 4 ⊢ (comp‘𝑂) = (comp‘𝑂) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Id‘𝑂) = (Id‘𝑂) | |
| 7 | oppcsect.t | . . . 4 ⊢ 𝑇 = (Sect‘𝑂) | |
| 8 | oppcsect.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 9 | 1 | oppccat 17623 | . . . . 5 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 11 | oppcsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | oppcsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 3, 4, 5, 6, 7, 10, 11, 12 | sectss 17654 | . . 3 ⊢ (𝜑 → (𝑋𝑇𝑌) ⊆ ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋))) |
| 14 | relxp 5629 | . . 3 ⊢ Rel ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋)) | |
| 15 | relss 5717 | . . 3 ⊢ ((𝑋𝑇𝑌) ⊆ ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋)) → (Rel ((𝑋(Hom ‘𝑂)𝑌) × (𝑌(Hom ‘𝑂)𝑋)) → Rel (𝑋𝑇𝑌))) | |
| 16 | 13, 14, 15 | mpisyl 21 | . 2 ⊢ (𝜑 → Rel (𝑋𝑇𝑌)) |
| 17 | relcnv 6048 | . . 3 ⊢ Rel ◡(𝑋𝑆𝑌) | |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → Rel ◡(𝑋𝑆𝑌)) |
| 19 | oppcsect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
| 20 | 2, 1, 8, 11, 12, 19, 7 | oppcsect 17680 | . . 3 ⊢ (𝜑 → (𝑓(𝑋𝑇𝑌)𝑔 ↔ 𝑔(𝑋𝑆𝑌)𝑓)) |
| 21 | vex 3440 | . . . 4 ⊢ 𝑓 ∈ V | |
| 22 | vex 3440 | . . . 4 ⊢ 𝑔 ∈ V | |
| 23 | 21, 22 | brcnv 5817 | . . 3 ⊢ (𝑓◡(𝑋𝑆𝑌)𝑔 ↔ 𝑔(𝑋𝑆𝑌)𝑓) |
| 24 | 20, 23 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑓(𝑋𝑇𝑌)𝑔 ↔ 𝑓◡(𝑋𝑆𝑌)𝑔)) |
| 25 | 16, 18, 24 | eqbrrdv 5728 | 1 ⊢ (𝜑 → (𝑋𝑇𝑌) = ◡(𝑋𝑆𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 × cxp 5609 ◡ccnv 5610 Rel wrel 5616 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Hom chom 17167 compcco 17168 Catccat 17565 Idccid 17566 oppCatcoppc 17612 Sectcsect 17646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-oppc 17613 df-sect 17649 |
| This theorem is referenced by: oppcinv 17682 |
| Copyright terms: Public domain | W3C validator |