![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrrdva | Structured version Visualization version GIF version |
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
Ref | Expression |
---|---|
eqbrrdva.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) |
eqbrrdva.2 | ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) |
eqbrrdva.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
Ref | Expression |
---|---|
eqbrrdva | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdva.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) | |
2 | xpss 5716 | . . . 4 ⊢ (𝐶 × 𝐷) ⊆ (V × V) | |
3 | 1, 2 | sstrdi 4021 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (V × V)) |
4 | df-rel 5707 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝜑 → Rel 𝐴) |
6 | eqbrrdva.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) | |
7 | 6, 2 | sstrdi 4021 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (V × V)) |
8 | df-rel 5707 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
9 | 7, 8 | sylibr 234 | . 2 ⊢ (𝜑 → Rel 𝐵) |
10 | 1 | ssbrd 5209 | . . . 4 ⊢ (𝜑 → (𝑥𝐴𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
11 | brxp 5749 | . . . 4 ⊢ (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
12 | 10, 11 | imbitrdi 251 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
13 | 6 | ssbrd 5209 | . . . 4 ⊢ (𝜑 → (𝑥𝐵𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
14 | 13, 11 | imbitrdi 251 | . . 3 ⊢ (𝜑 → (𝑥𝐵𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
15 | eqbrrdva.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
16 | 15 | 3expib 1122 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
17 | 12, 14, 16 | pm5.21ndd 379 | . 2 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
18 | 5, 9, 17 | eqbrrdv 5817 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: metustsym 24589 |
Copyright terms: Public domain | W3C validator |