Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdva Structured version   Visualization version   GIF version

Theorem eqbrrdva 5705
 Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
eqbrrdva.2 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
eqbrrdva.3 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdva (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
2 xpss 5536 . . . 4 (𝐶 × 𝐷) ⊆ (V × V)
31, 2sstrdi 3927 . . 3 (𝜑𝐴 ⊆ (V × V))
4 df-rel 5527 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
53, 4sylibr 237 . 2 (𝜑 → Rel 𝐴)
6 eqbrrdva.2 . . . 4 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
76, 2sstrdi 3927 . . 3 (𝜑𝐵 ⊆ (V × V))
8 df-rel 5527 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
97, 8sylibr 237 . 2 (𝜑 → Rel 𝐵)
101ssbrd 5074 . . . 4 (𝜑 → (𝑥𝐴𝑦𝑥(𝐶 × 𝐷)𝑦))
11 brxp 5566 . . . 4 (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥𝐶𝑦𝐷))
1210, 11syl6ib 254 . . 3 (𝜑 → (𝑥𝐴𝑦 → (𝑥𝐶𝑦𝐷)))
136ssbrd 5074 . . . 4 (𝜑 → (𝑥𝐵𝑦𝑥(𝐶 × 𝐷)𝑦))
1413, 11syl6ib 254 . . 3 (𝜑 → (𝑥𝐵𝑦 → (𝑥𝐶𝑦𝐷)))
15 eqbrrdva.3 . . . 4 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
16153expib 1119 . . 3 (𝜑 → ((𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦)))
1712, 14, 16pm5.21ndd 384 . 2 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
185, 9, 17eqbrrdv 5631 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ⊆ wss 3881   class class class wbr 5031   × cxp 5518  Rel wrel 5525 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5032  df-opab 5094  df-xp 5526  df-rel 5527 This theorem is referenced by:  metustsym  23172
 Copyright terms: Public domain W3C validator