| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrrdva | Structured version Visualization version GIF version | ||
| Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
| Ref | Expression |
|---|---|
| eqbrrdva.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) |
| eqbrrdva.2 | ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) |
| eqbrrdva.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| Ref | Expression |
|---|---|
| eqbrrdva | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdva.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) | |
| 2 | xpss 5637 | . . . 4 ⊢ (𝐶 × 𝐷) ⊆ (V × V) | |
| 3 | 1, 2 | sstrdi 3943 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (V × V)) |
| 4 | df-rel 5628 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝜑 → Rel 𝐴) |
| 6 | eqbrrdva.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) | |
| 7 | 6, 2 | sstrdi 3943 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (V × V)) |
| 8 | df-rel 5628 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 9 | 7, 8 | sylibr 234 | . 2 ⊢ (𝜑 → Rel 𝐵) |
| 10 | 1 | ssbrd 5138 | . . . 4 ⊢ (𝜑 → (𝑥𝐴𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
| 11 | brxp 5670 | . . . 4 ⊢ (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
| 12 | 10, 11 | imbitrdi 251 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 13 | 6 | ssbrd 5138 | . . . 4 ⊢ (𝜑 → (𝑥𝐵𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
| 14 | 13, 11 | imbitrdi 251 | . . 3 ⊢ (𝜑 → (𝑥𝐵𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 15 | eqbrrdva.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
| 16 | 15 | 3expib 1122 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
| 17 | 12, 14, 16 | pm5.21ndd 379 | . 2 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| 18 | 5, 9, 17 | eqbrrdv 5739 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 × cxp 5619 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: metustsym 24490 |
| Copyright terms: Public domain | W3C validator |