MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdva Structured version   Visualization version   GIF version

Theorem eqbrrdva 5862
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
eqbrrdva.2 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
eqbrrdva.3 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdva (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4 (𝜑𝐴 ⊆ (𝐶 × 𝐷))
2 xpss 5685 . . . 4 (𝐶 × 𝐷) ⊆ (V × V)
31, 2sstrdi 3989 . . 3 (𝜑𝐴 ⊆ (V × V))
4 df-rel 5676 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
53, 4sylibr 233 . 2 (𝜑 → Rel 𝐴)
6 eqbrrdva.2 . . . 4 (𝜑𝐵 ⊆ (𝐶 × 𝐷))
76, 2sstrdi 3989 . . 3 (𝜑𝐵 ⊆ (V × V))
8 df-rel 5676 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
97, 8sylibr 233 . 2 (𝜑 → Rel 𝐵)
101ssbrd 5184 . . . 4 (𝜑 → (𝑥𝐴𝑦𝑥(𝐶 × 𝐷)𝑦))
11 brxp 5718 . . . 4 (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥𝐶𝑦𝐷))
1210, 11imbitrdi 250 . . 3 (𝜑 → (𝑥𝐴𝑦 → (𝑥𝐶𝑦𝐷)))
136ssbrd 5184 . . . 4 (𝜑 → (𝑥𝐵𝑦𝑥(𝐶 × 𝐷)𝑦))
1413, 11imbitrdi 250 . . 3 (𝜑 → (𝑥𝐵𝑦 → (𝑥𝐶𝑦𝐷)))
15 eqbrrdva.3 . . . 4 ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))
16153expib 1119 . . 3 (𝜑 → ((𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦)))
1712, 14, 16pm5.21ndd 379 . 2 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
185, 9, 17eqbrrdv 5786 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3468  wss 3943   class class class wbr 5141   × cxp 5667  Rel wrel 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676
This theorem is referenced by:  metustsym  24414
  Copyright terms: Public domain W3C validator