![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrrdva | Structured version Visualization version GIF version |
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
Ref | Expression |
---|---|
eqbrrdva.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) |
eqbrrdva.2 | ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) |
eqbrrdva.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
Ref | Expression |
---|---|
eqbrrdva | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdva.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) | |
2 | xpss 5650 | . . . 4 ⊢ (𝐶 × 𝐷) ⊆ (V × V) | |
3 | 1, 2 | sstrdi 3957 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (V × V)) |
4 | df-rel 5641 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
5 | 3, 4 | sylibr 233 | . 2 ⊢ (𝜑 → Rel 𝐴) |
6 | eqbrrdva.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) | |
7 | 6, 2 | sstrdi 3957 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (V × V)) |
8 | df-rel 5641 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
9 | 7, 8 | sylibr 233 | . 2 ⊢ (𝜑 → Rel 𝐵) |
10 | 1 | ssbrd 5149 | . . . 4 ⊢ (𝜑 → (𝑥𝐴𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
11 | brxp 5682 | . . . 4 ⊢ (𝑥(𝐶 × 𝐷)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
12 | 10, 11 | syl6ib 251 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
13 | 6 | ssbrd 5149 | . . . 4 ⊢ (𝜑 → (𝑥𝐵𝑦 → 𝑥(𝐶 × 𝐷)𝑦)) |
14 | 13, 11 | syl6ib 251 | . . 3 ⊢ (𝜑 → (𝑥𝐵𝑦 → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
15 | eqbrrdva.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
16 | 15 | 3expib 1123 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
17 | 12, 14, 16 | pm5.21ndd 381 | . 2 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
18 | 5, 9, 17 | eqbrrdv 5750 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⊆ wss 3911 class class class wbr 5106 × cxp 5632 Rel wrel 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 |
This theorem is referenced by: metustsym 23927 |
Copyright terms: Public domain | W3C validator |