MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltri Structured version   Visualization version   GIF version

Theorem eqneltri 2826
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqneltri.1 𝐴 = 𝐵
eqneltri.2 ¬ 𝐵𝐶
Assertion
Ref Expression
eqneltri ¬ 𝐴𝐶

Proof of Theorem eqneltri
StepHypRef Expression
1 eqneltri.2 . 2 ¬ 𝐵𝐶
2 eqneltri.1 . . 3 𝐴 = 𝐵
32eleq1i 2823 . 2 (𝐴𝐶𝐵𝐶)
41, 3mtbir 326 1 ¬ 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-cleq 2730  df-clel 2811
This theorem is referenced by:  iprc  7646  tfr2b  8063  tz7.48-3  8111  pnfnre  10762  mnfnre  10764  prmrec  16360  00lsp  19874  goaln0  32928  bj-pinftynrr  35036  bj-minftynrr  35040  eliuniincex  42219  eliincex  42220  salgencntex  43446  nfermltl2rev  44758
  Copyright terms: Public domain W3C validator