![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqneltri | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqneltri.1 | ⊢ 𝐴 = 𝐵 |
eqneltri.2 | ⊢ ¬ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqneltri | ⊢ ¬ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltri.2 | . 2 ⊢ ¬ 𝐵 ∈ 𝐶 | |
2 | eqneltri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2835 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: iprc 7951 tfr2b 8452 tz7.48-3 8500 pnfnre 11331 mnfnre 11333 prmrec 16969 00lsp 21002 goaln0 35361 bj-pinftynrr 37188 bj-minftynrr 37192 eliuniincex 45011 eliincex 45012 salgencntex 46264 nfermltl2rev 47617 |
Copyright terms: Public domain | W3C validator |