MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltri Structured version   Visualization version   GIF version

Theorem eqneltri 2833
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqneltri.1 𝐴 = 𝐵
eqneltri.2 ¬ 𝐵𝐶
Assertion
Ref Expression
eqneltri ¬ 𝐴𝐶

Proof of Theorem eqneltri
StepHypRef Expression
1 eqneltri.2 . 2 ¬ 𝐵𝐶
2 eqneltri.1 . . 3 𝐴 = 𝐵
32eleq1i 2830 . 2 (𝐴𝐶𝐵𝐶)
41, 3mtbir 322 1 ¬ 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-cleq 2731  df-clel 2817
This theorem is referenced by:  iprc  7747  tfr2b  8211  tz7.48-3  8259  pnfnre  11000  mnfnre  11002  prmrec  16604  00lsp  20224  goaln0  33334  bj-pinftynrr  35372  bj-minftynrr  35376  eliuniincex  42612  eliincex  42613  salgencntex  43836  nfermltl2rev  45147
  Copyright terms: Public domain W3C validator