Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqneltri | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqneltri.1 | ⊢ 𝐴 = 𝐵 |
eqneltri.2 | ⊢ ¬ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqneltri | ⊢ ¬ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltri.2 | . 2 ⊢ ¬ 𝐵 ∈ 𝐶 | |
2 | eqneltri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2823 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mtbir 326 | 1 ⊢ ¬ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-cleq 2730 df-clel 2811 |
This theorem is referenced by: iprc 7646 tfr2b 8063 tz7.48-3 8111 pnfnre 10762 mnfnre 10764 prmrec 16360 00lsp 19874 goaln0 32928 bj-pinftynrr 35036 bj-minftynrr 35040 eliuniincex 42219 eliincex 42220 salgencntex 43446 nfermltl2rev 44758 |
Copyright terms: Public domain | W3C validator |