MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltri Structured version   Visualization version   GIF version

Theorem eqneltri 2844
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqneltri.1 𝐴 = 𝐵
eqneltri.2 ¬ 𝐵𝐶
Assertion
Ref Expression
eqneltri ¬ 𝐴𝐶

Proof of Theorem eqneltri
StepHypRef Expression
1 eqneltri.2 . 2 ¬ 𝐵𝐶
2 eqneltri.1 . . 3 𝐴 = 𝐵
32eleq1i 2816 . 2 (𝐴𝐶𝐵𝐶)
41, 3mtbir 322 1 ¬ 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-cleq 2717  df-clel 2802
This theorem is referenced by:  iprc  7919  tfr2b  8417  tz7.48-3  8465  pnfnre  11292  mnfnre  11294  prmrec  16910  00lsp  20894  goaln0  35154  bj-pinftynrr  36852  bj-minftynrr  36856  eliuniincex  44620  eliincex  44621  salgencntex  45874  nfermltl2rev  47225
  Copyright terms: Public domain W3C validator