| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltri | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| eqneltri.1 | ⊢ 𝐴 = 𝐵 |
| eqneltri.2 | ⊢ ¬ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqneltri | ⊢ ¬ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltri.2 | . 2 ⊢ ¬ 𝐵 ∈ 𝐶 | |
| 2 | eqneltri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | eleq1i 2820 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: iprc 7890 tfr2b 8367 tz7.48-3 8415 pnfnre 11222 mnfnre 11224 prmrec 16900 00lsp 20894 goaln0 35387 bj-pinftynrr 37217 bj-minftynrr 37221 eliuniincex 45110 eliincex 45111 salgencntex 46348 nfermltl2rev 47748 |
| Copyright terms: Public domain | W3C validator |