Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-minftynrr Structured version   Visualization version   GIF version

Theorem bj-minftynrr 35425
Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-minftynrr ¬ -∞ ∈ ℂ

Proof of Theorem bj-minftynrr
StepHypRef Expression
1 df-bj-minfty 35423 . 2 -∞ = (+∞ei‘π)
2 bj-inftyexpidisj 35409 . 2 ¬ (+∞ei‘π) ∈ ℂ
31, 2eqneltri 2827 1 ¬ -∞ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2101  cfv 6447  cc 10897  πcpi 15804  +∞eicinftyexpi 35405  -∞cminfty 35422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608  ax-reg 9379  ax-cnex 10955
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-iota 6399  df-fun 6449  df-fn 6450  df-fv 6455  df-c 10905  df-bj-inftyexpi 35406  df-bj-minfty 35423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator