Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-minftynrr | Structured version Visualization version GIF version |
Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-minftynrr | ⊢ ¬ -∞ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-minfty 35423 | . 2 ⊢ -∞ = (+∞ei‘π) | |
2 | bj-inftyexpidisj 35409 | . 2 ⊢ ¬ (+∞ei‘π) ∈ ℂ | |
3 | 1, 2 | eqneltri 2827 | 1 ⊢ ¬ -∞ ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2101 ‘cfv 6447 ℂcc 10897 πcpi 15804 +∞eicinftyexpi 35405 -∞cminfty 35422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 ax-reg 9379 ax-cnex 10955 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fn 6450 df-fv 6455 df-c 10905 df-bj-inftyexpi 35406 df-bj-minfty 35423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |