| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-minftynrr | Structured version Visualization version GIF version | ||
| Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-minftynrr | ⊢ ¬ -∞ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-minfty 37171 | . 2 ⊢ -∞ = (+∞ei‘π) | |
| 2 | bj-inftyexpidisj 37157 | . 2 ⊢ ¬ (+∞ei‘π) ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2852 | 1 ⊢ ¬ -∞ ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2107 ‘cfv 6528 ℂcc 11120 πcpi 16071 +∞eicinftyexpi 37153 -∞cminfty 37170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 ax-reg 9599 ax-cnex 11178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-iota 6481 df-fun 6530 df-fn 6531 df-fv 6536 df-c 11128 df-bj-inftyexpi 37154 df-bj-minfty 37171 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |