Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-minftynrr Structured version   Visualization version   GIF version

Theorem bj-minftynrr 37173
Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-minftynrr ¬ -∞ ∈ ℂ

Proof of Theorem bj-minftynrr
StepHypRef Expression
1 df-bj-minfty 37171 . 2 -∞ = (+∞ei‘π)
2 bj-inftyexpidisj 37157 . 2 ¬ (+∞ei‘π) ∈ ℂ
31, 2eqneltri 2852 1 ¬ -∞ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  cfv 6528  cc 11120  πcpi 16071  +∞eicinftyexpi 37153  -∞cminfty 37170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724  ax-reg 9599  ax-cnex 11178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-iota 6481  df-fun 6530  df-fn 6531  df-fv 6536  df-c 11128  df-bj-inftyexpi 37154  df-bj-minfty 37171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator