Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-minftynrr Structured version   Visualization version   GIF version

Theorem bj-minftynrr 37190
Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-minftynrr ¬ -∞ ∈ ℂ

Proof of Theorem bj-minftynrr
StepHypRef Expression
1 df-bj-minfty 37188 . 2 -∞ = (+∞ei‘π)
2 bj-inftyexpidisj 37174 . 2 ¬ (+∞ei‘π) ∈ ℂ
31, 2eqneltri 2853 1 ¬ -∞ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  cfv 6530  cc 11125  πcpi 16080  +∞eicinftyexpi 37170  -∞cminfty 37187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-cnex 11183
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538  df-c 11133  df-bj-inftyexpi 37171  df-bj-minfty 37188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator