![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-minftynrr | Structured version Visualization version GIF version |
Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-minftynrr | ⊢ ¬ -∞ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-minfty 37167 | . 2 ⊢ -∞ = (+∞ei‘π) | |
2 | bj-inftyexpidisj 37153 | . 2 ⊢ ¬ (+∞ei‘π) ∈ ℂ | |
3 | 1, 2 | eqneltri 2856 | 1 ⊢ ¬ -∞ ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2104 ‘cfv 6558 ℂcc 11144 πcpi 16088 +∞eicinftyexpi 37149 -∞cminfty 37166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5430 ax-un 7747 ax-reg 9623 ax-cnex 11202 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-iota 6510 df-fun 6560 df-fn 6561 df-fv 6566 df-c 11152 df-bj-inftyexpi 37150 df-bj-minfty 37167 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |