![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-minftynrr | Structured version Visualization version GIF version |
Description: The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-minftynrr | ⊢ ¬ -∞ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-minfty 37183 | . 2 ⊢ -∞ = (+∞ei‘π) | |
2 | bj-inftyexpidisj 37169 | . 2 ⊢ ¬ (+∞ei‘π) ∈ ℂ | |
3 | 1, 2 | eqneltri 2863 | 1 ⊢ ¬ -∞ ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ‘cfv 6568 ℂcc 11176 πcpi 16108 +∞eicinftyexpi 37165 -∞cminfty 37182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 ax-reg 9655 ax-cnex 11234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-iota 6520 df-fun 6570 df-fn 6571 df-fv 6576 df-c 11184 df-bj-inftyexpi 37166 df-bj-minfty 37183 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |