![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.48-3 | Structured version Visualization version GIF version |
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) |
Ref | Expression |
---|---|
tz7.48.1 | ⊢ 𝐹 Fn On |
Ref | Expression |
---|---|
tz7.48-3 | ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz7.48.1 | . . . . 5 ⊢ 𝐹 Fn On | |
2 | 1 | fndmi 6651 | . . . 4 ⊢ dom 𝐹 = On |
3 | onprc 7776 | . . . 4 ⊢ ¬ On ∈ V | |
4 | 2, 3 | eqneltri 2844 | . . 3 ⊢ ¬ dom 𝐹 ∈ V |
5 | 1 | tz7.48-2 8459 | . . . 4 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → Fun ◡𝐹) |
6 | funrnex 7953 | . . . . . 6 ⊢ (dom ◡𝐹 ∈ V → (Fun ◡𝐹 → ran ◡𝐹 ∈ V)) | |
7 | 6 | com12 32 | . . . . 5 ⊢ (Fun ◡𝐹 → (dom ◡𝐹 ∈ V → ran ◡𝐹 ∈ V)) |
8 | df-rn 5681 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
9 | 8 | eleq1i 2816 | . . . . 5 ⊢ (ran 𝐹 ∈ V ↔ dom ◡𝐹 ∈ V) |
10 | dfdm4 5890 | . . . . . 6 ⊢ dom 𝐹 = ran ◡𝐹 | |
11 | 10 | eleq1i 2816 | . . . . 5 ⊢ (dom 𝐹 ∈ V ↔ ran ◡𝐹 ∈ V) |
12 | 7, 9, 11 | 3imtr4g 295 | . . . 4 ⊢ (Fun ◡𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
13 | 5, 12 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
14 | 4, 13 | mtoi 198 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ ran 𝐹 ∈ V) |
15 | 1 | tz7.48-1 8460 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |
16 | ssexg 5316 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐴 ∧ 𝐴 ∈ V) → ran 𝐹 ∈ V) | |
17 | 16 | ex 411 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
18 | 15, 17 | syl 17 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
19 | 14, 18 | mtod 197 | 1 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∀wral 3051 Vcvv 3463 ∖ cdif 3936 ⊆ wss 3939 ◡ccnv 5669 dom cdm 5670 ran crn 5671 “ cima 5673 Oncon0 6362 Fun wfun 6535 Fn wfn 6536 ‘cfv 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-ord 6365 df-on 6366 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 |
This theorem is referenced by: tz7.49 8462 |
Copyright terms: Public domain | W3C validator |