| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.48-3 | Structured version Visualization version GIF version | ||
| Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) |
| Ref | Expression |
|---|---|
| tz7.48.1 | ⊢ 𝐹 Fn On |
| Ref | Expression |
|---|---|
| tz7.48-3 | ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.48.1 | . . . . 5 ⊢ 𝐹 Fn On | |
| 2 | 1 | fndmi 6647 | . . . 4 ⊢ dom 𝐹 = On |
| 3 | onprc 7777 | . . . 4 ⊢ ¬ On ∈ V | |
| 4 | 2, 3 | eqneltri 2854 | . . 3 ⊢ ¬ dom 𝐹 ∈ V |
| 5 | 1 | tz7.48-2 8461 | . . . 4 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → Fun ◡𝐹) |
| 6 | funrnex 7957 | . . . . . 6 ⊢ (dom ◡𝐹 ∈ V → (Fun ◡𝐹 → ran ◡𝐹 ∈ V)) | |
| 7 | 6 | com12 32 | . . . . 5 ⊢ (Fun ◡𝐹 → (dom ◡𝐹 ∈ V → ran ◡𝐹 ∈ V)) |
| 8 | df-rn 5670 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 9 | 8 | eleq1i 2826 | . . . . 5 ⊢ (ran 𝐹 ∈ V ↔ dom ◡𝐹 ∈ V) |
| 10 | dfdm4 5880 | . . . . . 6 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 11 | 10 | eleq1i 2826 | . . . . 5 ⊢ (dom 𝐹 ∈ V ↔ ran ◡𝐹 ∈ V) |
| 12 | 7, 9, 11 | 3imtr4g 296 | . . . 4 ⊢ (Fun ◡𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
| 13 | 5, 12 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
| 14 | 4, 13 | mtoi 199 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ ran 𝐹 ∈ V) |
| 15 | 1 | tz7.48-1 8462 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |
| 16 | ssexg 5298 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐴 ∧ 𝐴 ∈ V) → ran 𝐹 ∈ V) | |
| 17 | 16 | ex 412 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
| 18 | 15, 17 | syl 17 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
| 19 | 14, 18 | mtod 198 | 1 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 Oncon0 6357 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: tz7.49 8464 |
| Copyright terms: Public domain | W3C validator |