MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-3 Structured version   Visualization version   GIF version

Theorem tz7.48-3 8467
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-3
StepHypRef Expression
1 tz7.48.1 . . . . 5 𝐹 Fn On
21fndmi 6653 . . . 4 dom 𝐹 = On
3 onprc 7781 . . . 4 ¬ On ∈ V
42, 3eqneltri 2852 . . 3 ¬ dom 𝐹 ∈ V
51tz7.48-2 8465 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
6 funrnex 7961 . . . . . 6 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
76com12 32 . . . . 5 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
8 df-rn 5678 . . . . . 6 ran 𝐹 = dom 𝐹
98eleq1i 2824 . . . . 5 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
10 dfdm4 5888 . . . . . 6 dom 𝐹 = ran 𝐹
1110eleq1i 2824 . . . . 5 (dom 𝐹 ∈ V ↔ ran 𝐹 ∈ V)
127, 9, 113imtr4g 296 . . . 4 (Fun 𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
135, 12syl 17 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
144, 13mtoi 199 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ ran 𝐹 ∈ V)
151tz7.48-1 8466 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
16 ssexg 5305 . . . 4 ((ran 𝐹𝐴𝐴 ∈ V) → ran 𝐹 ∈ V)
1716ex 412 . . 3 (ran 𝐹𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V))
1815, 17syl 17 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V))
1914, 18mtod 198 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wral 3050  Vcvv 3464  cdif 3930  wss 3933  ccnv 5666  dom cdm 5667  ran crn 5668  cima 5670  Oncon0 6365  Fun wfun 6536   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by:  tz7.49  8468
  Copyright terms: Public domain W3C validator