| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.48-3 | Structured version Visualization version GIF version | ||
| Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) |
| Ref | Expression |
|---|---|
| tz7.48.1 | ⊢ 𝐹 Fn On |
| Ref | Expression |
|---|---|
| tz7.48-3 | ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.48.1 | . . . . 5 ⊢ 𝐹 Fn On | |
| 2 | 1 | fndmi 6604 | . . . 4 ⊢ dom 𝐹 = On |
| 3 | onprc 7734 | . . . 4 ⊢ ¬ On ∈ V | |
| 4 | 2, 3 | eqneltri 2847 | . . 3 ⊢ ¬ dom 𝐹 ∈ V |
| 5 | 1 | tz7.48-2 8387 | . . . 4 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → Fun ◡𝐹) |
| 6 | funrnex 7912 | . . . . . 6 ⊢ (dom ◡𝐹 ∈ V → (Fun ◡𝐹 → ran ◡𝐹 ∈ V)) | |
| 7 | 6 | com12 32 | . . . . 5 ⊢ (Fun ◡𝐹 → (dom ◡𝐹 ∈ V → ran ◡𝐹 ∈ V)) |
| 8 | df-rn 5642 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 9 | 8 | eleq1i 2819 | . . . . 5 ⊢ (ran 𝐹 ∈ V ↔ dom ◡𝐹 ∈ V) |
| 10 | dfdm4 5849 | . . . . . 6 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 11 | 10 | eleq1i 2819 | . . . . 5 ⊢ (dom 𝐹 ∈ V ↔ ran ◡𝐹 ∈ V) |
| 12 | 7, 9, 11 | 3imtr4g 296 | . . . 4 ⊢ (Fun ◡𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
| 13 | 5, 12 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V)) |
| 14 | 4, 13 | mtoi 199 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ ran 𝐹 ∈ V) |
| 15 | 1 | tz7.48-1 8388 | . . 3 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |
| 16 | ssexg 5273 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐴 ∧ 𝐴 ∈ V) → ran 𝐹 ∈ V) | |
| 17 | 16 | ex 412 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
| 18 | 15, 17 | syl 17 | . 2 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V)) |
| 19 | 14, 18 | mtod 198 | 1 ⊢ (∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ¬ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 Oncon0 6320 Fun wfun 6493 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: tz7.49 8390 |
| Copyright terms: Public domain | W3C validator |