MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-3 Structured version   Visualization version   GIF version

Theorem tz7.48-3 8158
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-3
StepHypRef Expression
1 tz7.48.1 . . . . 5 𝐹 Fn On
21fndmi 6460 . . . 4 dom 𝐹 = On
3 onprc 7540 . . . 4 ¬ On ∈ V
42, 3eqneltri 2824 . . 3 ¬ dom 𝐹 ∈ V
51tz7.48-2 8156 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
6 funrnex 7705 . . . . . 6 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
76com12 32 . . . . 5 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
8 df-rn 5547 . . . . . 6 ran 𝐹 = dom 𝐹
98eleq1i 2821 . . . . 5 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
10 dfdm4 5749 . . . . . 6 dom 𝐹 = ran 𝐹
1110eleq1i 2821 . . . . 5 (dom 𝐹 ∈ V ↔ ran 𝐹 ∈ V)
127, 9, 113imtr4g 299 . . . 4 (Fun 𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
135, 12syl 17 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
144, 13mtoi 202 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ ran 𝐹 ∈ V)
151tz7.48-1 8157 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
16 ssexg 5201 . . . 4 ((ran 𝐹𝐴𝐴 ∈ V) → ran 𝐹 ∈ V)
1716ex 416 . . 3 (ran 𝐹𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V))
1815, 17syl 17 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V))
1914, 18mtod 201 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2112  wral 3051  Vcvv 3398  cdif 3850  wss 3853  ccnv 5535  dom cdm 5536  ran crn 5537  cima 5539  Oncon0 6191  Fun wfun 6352   Fn wfn 6353  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366
This theorem is referenced by:  tz7.49  8159
  Copyright terms: Public domain W3C validator