MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-3 Structured version   Visualization version   GIF version

Theorem tz7.48-3 8461
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-3
StepHypRef Expression
1 tz7.48.1 . . . . 5 𝐹 Fn On
21fndmi 6651 . . . 4 dom 𝐹 = On
3 onprc 7776 . . . 4 ¬ On ∈ V
42, 3eqneltri 2844 . . 3 ¬ dom 𝐹 ∈ V
51tz7.48-2 8459 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
6 funrnex 7953 . . . . . 6 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
76com12 32 . . . . 5 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
8 df-rn 5681 . . . . . 6 ran 𝐹 = dom 𝐹
98eleq1i 2816 . . . . 5 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
10 dfdm4 5890 . . . . . 6 dom 𝐹 = ran 𝐹
1110eleq1i 2816 . . . . 5 (dom 𝐹 ∈ V ↔ ran 𝐹 ∈ V)
127, 9, 113imtr4g 295 . . . 4 (Fun 𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
135, 12syl 17 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
144, 13mtoi 198 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ ran 𝐹 ∈ V)
151tz7.48-1 8460 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
16 ssexg 5316 . . . 4 ((ran 𝐹𝐴𝐴 ∈ V) → ran 𝐹 ∈ V)
1716ex 411 . . 3 (ran 𝐹𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V))
1815, 17syl 17 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V))
1914, 18mtod 197 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  wral 3051  Vcvv 3463  cdif 3936  wss 3939  ccnv 5669  dom cdm 5670  ran crn 5671  cima 5673  Oncon0 6362  Fun wfun 6535   Fn wfn 6536  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-ord 6365  df-on 6366  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549
This theorem is referenced by:  tz7.49  8462
  Copyright terms: Public domain W3C validator