MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-3 Structured version   Visualization version   GIF version

Theorem tz7.48-3 8463
Description: Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-3
StepHypRef Expression
1 tz7.48.1 . . . . 5 𝐹 Fn On
21fndmi 6647 . . . 4 dom 𝐹 = On
3 onprc 7777 . . . 4 ¬ On ∈ V
42, 3eqneltri 2854 . . 3 ¬ dom 𝐹 ∈ V
51tz7.48-2 8461 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
6 funrnex 7957 . . . . . 6 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
76com12 32 . . . . 5 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
8 df-rn 5670 . . . . . 6 ran 𝐹 = dom 𝐹
98eleq1i 2826 . . . . 5 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
10 dfdm4 5880 . . . . . 6 dom 𝐹 = ran 𝐹
1110eleq1i 2826 . . . . 5 (dom 𝐹 ∈ V ↔ ran 𝐹 ∈ V)
127, 9, 113imtr4g 296 . . . 4 (Fun 𝐹 → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
135, 12syl 17 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (ran 𝐹 ∈ V → dom 𝐹 ∈ V))
144, 13mtoi 199 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ ran 𝐹 ∈ V)
151tz7.48-1 8462 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
16 ssexg 5298 . . . 4 ((ran 𝐹𝐴𝐴 ∈ V) → ran 𝐹 ∈ V)
1716ex 412 . . 3 (ran 𝐹𝐴 → (𝐴 ∈ V → ran 𝐹 ∈ V))
1815, 17syl 17 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐴 ∈ V → ran 𝐹 ∈ V))
1914, 18mtod 198 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wral 3052  Vcvv 3464  cdif 3928  wss 3931  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  tz7.49  8464
  Copyright terms: Public domain W3C validator