| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iprc | Structured version Visualization version GIF version | ||
| Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 23142. (Contributed by NM, 1-Jan-2007.) |
| Ref | Expression |
|---|---|
| iprc | ⊢ ¬ I ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmi 5864 | . . 3 ⊢ dom I = V | |
| 2 | vprc 5254 | . . 3 ⊢ ¬ V ∈ V | |
| 3 | 1, 2 | eqneltri 2847 | . 2 ⊢ ¬ dom I ∈ V |
| 4 | dmexg 7834 | . 2 ⊢ ( I ∈ V → dom I ∈ V) | |
| 5 | 3, 4 | mto 197 | 1 ⊢ ¬ I ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3436 I cid 5513 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |