MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprc Structured version   Visualization version   GIF version

Theorem iprc 7953
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 23288. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I ∈ V

Proof of Theorem iprc
StepHypRef Expression
1 dmi 5946 . . 3 dom I = V
2 vprc 5333 . . 3 ¬ V ∈ V
31, 2eqneltri 2863 . 2 ¬ dom I ∈ V
4 dmexg 7943 . 2 ( I ∈ V → dom I ∈ V)
53, 4mto 197 1 ¬ I ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Vcvv 3488   I cid 5592  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator