MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprc Structured version   Visualization version   GIF version

Theorem iprc 7908
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 22994. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I ∈ V

Proof of Theorem iprc
StepHypRef Expression
1 dmi 5921 . . 3 dom I = V
2 vprc 5315 . . 3 ¬ V ∈ V
31, 2eqneltri 2851 . 2 ¬ dom I ∈ V
4 dmexg 7898 . 2 ( I ∈ V → dom I ∈ V)
53, 4mto 196 1 ¬ I ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2105  Vcvv 3473   I cid 5573  dom cdm 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator