MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprc Structured version   Visualization version   GIF version

Theorem iprc 7691
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 22154. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I ∈ V

Proof of Theorem iprc
StepHypRef Expression
1 dmi 5790 . . 3 dom I = V
2 vprc 5208 . . 3 ¬ V ∈ V
31, 2eqneltri 2831 . 2 ¬ dom I ∈ V
4 dmexg 7681 . 2 ( I ∈ V → dom I ∈ V)
53, 4mto 200 1 ¬ I ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2110  Vcvv 3408   I cid 5454  dom cdm 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator