Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iprc | Structured version Visualization version GIF version |
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 22316. (Contributed by NM, 1-Jan-2007.) |
Ref | Expression |
---|---|
iprc | ⊢ ¬ I ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmi 5819 | . . 3 ⊢ dom I = V | |
2 | vprc 5234 | . . 3 ⊢ ¬ V ∈ V | |
3 | 1, 2 | eqneltri 2832 | . 2 ⊢ ¬ dom I ∈ V |
4 | dmexg 7724 | . 2 ⊢ ( I ∈ V → dom I ∈ V) | |
5 | 3, 4 | mto 196 | 1 ⊢ ¬ I ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 Vcvv 3422 I cid 5479 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |