![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iprc | Structured version Visualization version GIF version |
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 22994. (Contributed by NM, 1-Jan-2007.) |
Ref | Expression |
---|---|
iprc | ⊢ ¬ I ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmi 5921 | . . 3 ⊢ dom I = V | |
2 | vprc 5315 | . . 3 ⊢ ¬ V ∈ V | |
3 | 1, 2 | eqneltri 2851 | . 2 ⊢ ¬ dom I ∈ V |
4 | dmexg 7898 | . 2 ⊢ ( I ∈ V → dom I ∈ V) | |
5 | 3, 4 | mto 196 | 1 ⊢ ¬ I ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 Vcvv 3473 I cid 5573 dom cdm 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |