MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprc Structured version   Visualization version   GIF version

Theorem iprc 7941
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 23290. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I ∈ V

Proof of Theorem iprc
StepHypRef Expression
1 dmi 5939 . . 3 dom I = V
2 vprc 5324 . . 3 ¬ V ∈ V
31, 2eqneltri 2860 . 2 ¬ dom I ∈ V
4 dmexg 7931 . 2 ( I ∈ V → dom I ∈ V)
53, 4mto 197 1 ¬ I ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Vcvv 3481   I cid 5586  dom cdm 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator