MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprc Structured version   Visualization version   GIF version

Theorem iprc 7734
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 22316. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc ¬ I ∈ V

Proof of Theorem iprc
StepHypRef Expression
1 dmi 5819 . . 3 dom I = V
2 vprc 5234 . . 3 ¬ V ∈ V
31, 2eqneltri 2832 . 2 ¬ dom I ∈ V
4 dmexg 7724 . 2 ( I ∈ V → dom I ∈ V)
53, 4mto 196 1 ¬ I ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Vcvv 3422   I cid 5479  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator