![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr2b | Structured version Visualization version GIF version |
Description: Without assuming ax-rep 5303, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr2b | ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 7817 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | eqid 2740 | . . . . 5 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem15 8448 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V)) |
4 | tfr.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
5 | 4 | dmeqi 5929 | . . . . 5 ⊢ dom 𝐹 = dom recs(𝐺) |
6 | 5 | eleq2i 2836 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ dom recs(𝐺)) |
7 | 4 | reseq1i 6005 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
8 | 7 | eleq1i 2835 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V) |
9 | 3, 6, 8 | 3bitr4g 314 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
10 | onprc 7813 | . . . . . 6 ⊢ ¬ On ∈ V | |
11 | elex 3509 | . . . . . 6 ⊢ (On ∈ dom 𝐹 → On ∈ V) | |
12 | 10, 11 | mto 197 | . . . . 5 ⊢ ¬ On ∈ dom 𝐹 |
13 | eleq1 2832 | . . . . 5 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹)) | |
14 | 12, 13 | mtbiri 327 | . . . 4 ⊢ (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹) |
15 | 2 | tfrlem13 8446 | . . . . . 6 ⊢ ¬ recs(𝐺) ∈ V |
16 | 4, 15 | eqneltri 2863 | . . . . 5 ⊢ ¬ 𝐹 ∈ V |
17 | reseq2 6004 | . . . . . . 7 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = (𝐹 ↾ On)) | |
18 | 4 | tfr1a 8450 | . . . . . . . . . 10 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
19 | 18 | simpli 483 | . . . . . . . . 9 ⊢ Fun 𝐹 |
20 | funrel 6595 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Rel 𝐹) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . 8 ⊢ Rel 𝐹 |
22 | 18 | simpri 485 | . . . . . . . . 9 ⊢ Lim dom 𝐹 |
23 | limord 6455 | . . . . . . . . 9 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
24 | ordsson 7818 | . . . . . . . . 9 ⊢ (Ord dom 𝐹 → dom 𝐹 ⊆ On) | |
25 | 22, 23, 24 | mp2b 10 | . . . . . . . 8 ⊢ dom 𝐹 ⊆ On |
26 | relssres 6051 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹) | |
27 | 21, 25, 26 | mp2an 691 | . . . . . . 7 ⊢ (𝐹 ↾ On) = 𝐹 |
28 | 17, 27 | eqtrdi 2796 | . . . . . 6 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = 𝐹) |
29 | 28 | eleq1d 2829 | . . . . 5 ⊢ (𝐴 = On → ((𝐹 ↾ 𝐴) ∈ V ↔ 𝐹 ∈ V)) |
30 | 16, 29 | mtbiri 327 | . . . 4 ⊢ (𝐴 = On → ¬ (𝐹 ↾ 𝐴) ∈ V) |
31 | 14, 30 | 2falsed 376 | . . 3 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
32 | 9, 31 | jaoi 856 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
33 | 1, 32 | sylbi 217 | 1 ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 Ord word 6394 Oncon0 6395 Lim wlim 6396 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 recscrecs 8426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 |
This theorem is referenced by: ordtypelem3 9589 ordtypelem9 9595 |
Copyright terms: Public domain | W3C validator |