MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2b Structured version   Visualization version   GIF version

Theorem tfr2b 8423
Description: Without assuming ax-rep 5289, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2b (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))

Proof of Theorem tfr2b
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7790 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 eqid 2728 . . . . 5 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
32tfrlem15 8419 . . . 4 (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V))
4 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
54dmeqi 5911 . . . . 5 dom 𝐹 = dom recs(𝐺)
65eleq2i 2821 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom recs(𝐺))
74reseq1i 5985 . . . . 5 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87eleq1i 2820 . . . 4 ((𝐹𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V)
93, 6, 83bitr4g 313 . . 3 (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
10 onprc 7786 . . . . . 6 ¬ On ∈ V
11 elex 3492 . . . . . 6 (On ∈ dom 𝐹 → On ∈ V)
1210, 11mto 196 . . . . 5 ¬ On ∈ dom 𝐹
13 eleq1 2817 . . . . 5 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹))
1412, 13mtbiri 326 . . . 4 (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹)
152tfrlem13 8417 . . . . . 6 ¬ recs(𝐺) ∈ V
164, 15eqneltri 2848 . . . . 5 ¬ 𝐹 ∈ V
17 reseq2 5984 . . . . . . 7 (𝐴 = On → (𝐹𝐴) = (𝐹 ↾ On))
184tfr1a 8421 . . . . . . . . . 10 (Fun 𝐹 ∧ Lim dom 𝐹)
1918simpli 482 . . . . . . . . 9 Fun 𝐹
20 funrel 6575 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
2119, 20ax-mp 5 . . . . . . . 8 Rel 𝐹
2218simpri 484 . . . . . . . . 9 Lim dom 𝐹
23 limord 6434 . . . . . . . . 9 (Lim dom 𝐹 → Ord dom 𝐹)
24 ordsson 7791 . . . . . . . . 9 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
2522, 23, 24mp2b 10 . . . . . . . 8 dom 𝐹 ⊆ On
26 relssres 6031 . . . . . . . 8 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2721, 25, 26mp2an 690 . . . . . . 7 (𝐹 ↾ On) = 𝐹
2817, 27eqtrdi 2784 . . . . . 6 (𝐴 = On → (𝐹𝐴) = 𝐹)
2928eleq1d 2814 . . . . 5 (𝐴 = On → ((𝐹𝐴) ∈ V ↔ 𝐹 ∈ V))
3016, 29mtbiri 326 . . . 4 (𝐴 = On → ¬ (𝐹𝐴) ∈ V)
3114, 302falsed 375 . . 3 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
329, 31jaoi 855 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
331, 32sylbi 216 1 (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  {cab 2705  wral 3058  wrex 3067  Vcvv 3473  wss 3949  dom cdm 5682  cres 5684  Rel wrel 5687  Ord word 6373  Oncon0 6374  Lim wlim 6375  Fun wfun 6547   Fn wfn 6548  cfv 6553  recscrecs 8397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398
This theorem is referenced by:  ordtypelem3  9551  ordtypelem9  9557
  Copyright terms: Public domain W3C validator