| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr2b | Structured version Visualization version GIF version | ||
| Description: Without assuming ax-rep 5237, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr2b | ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon 7761 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 3 | 2 | tfrlem15 8363 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V)) |
| 4 | tfr.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
| 5 | 4 | dmeqi 5871 | . . . . 5 ⊢ dom 𝐹 = dom recs(𝐺) |
| 6 | 5 | eleq2i 2821 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ dom recs(𝐺)) |
| 7 | 4 | reseq1i 5949 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
| 8 | 7 | eleq1i 2820 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V) |
| 9 | 3, 6, 8 | 3bitr4g 314 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
| 10 | onprc 7757 | . . . . . 6 ⊢ ¬ On ∈ V | |
| 11 | elex 3471 | . . . . . 6 ⊢ (On ∈ dom 𝐹 → On ∈ V) | |
| 12 | 10, 11 | mto 197 | . . . . 5 ⊢ ¬ On ∈ dom 𝐹 |
| 13 | eleq1 2817 | . . . . 5 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹)) | |
| 14 | 12, 13 | mtbiri 327 | . . . 4 ⊢ (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹) |
| 15 | 2 | tfrlem13 8361 | . . . . . 6 ⊢ ¬ recs(𝐺) ∈ V |
| 16 | 4, 15 | eqneltri 2848 | . . . . 5 ⊢ ¬ 𝐹 ∈ V |
| 17 | reseq2 5948 | . . . . . . 7 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = (𝐹 ↾ On)) | |
| 18 | 4 | tfr1a 8365 | . . . . . . . . . 10 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| 19 | 18 | simpli 483 | . . . . . . . . 9 ⊢ Fun 𝐹 |
| 20 | funrel 6536 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . 8 ⊢ Rel 𝐹 |
| 22 | 18 | simpri 485 | . . . . . . . . 9 ⊢ Lim dom 𝐹 |
| 23 | limord 6396 | . . . . . . . . 9 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
| 24 | ordsson 7762 | . . . . . . . . 9 ⊢ (Ord dom 𝐹 → dom 𝐹 ⊆ On) | |
| 25 | 22, 23, 24 | mp2b 10 | . . . . . . . 8 ⊢ dom 𝐹 ⊆ On |
| 26 | relssres 5996 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹) | |
| 27 | 21, 25, 26 | mp2an 692 | . . . . . . 7 ⊢ (𝐹 ↾ On) = 𝐹 |
| 28 | 17, 27 | eqtrdi 2781 | . . . . . 6 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = 𝐹) |
| 29 | 28 | eleq1d 2814 | . . . . 5 ⊢ (𝐴 = On → ((𝐹 ↾ 𝐴) ∈ V ↔ 𝐹 ∈ V)) |
| 30 | 16, 29 | mtbiri 327 | . . . 4 ⊢ (𝐴 = On → ¬ (𝐹 ↾ 𝐴) ∈ V) |
| 31 | 14, 30 | 2falsed 376 | . . 3 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
| 32 | 9, 31 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
| 33 | 1, 32 | sylbi 217 | 1 ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 Ord word 6334 Oncon0 6335 Lim wlim 6336 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 recscrecs 8342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 |
| This theorem is referenced by: ordtypelem3 9480 ordtypelem9 9486 |
| Copyright terms: Public domain | W3C validator |