MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2b Structured version   Visualization version   GIF version

Theorem tfr2b 8324
Description: Without assuming ax-rep 5221, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2b (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))

Proof of Theorem tfr2b
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7724 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 eqid 2733 . . . . 5 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
32tfrlem15 8320 . . . 4 (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V))
4 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
54dmeqi 5850 . . . . 5 dom 𝐹 = dom recs(𝐺)
65eleq2i 2825 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom recs(𝐺))
74reseq1i 5931 . . . . 5 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87eleq1i 2824 . . . 4 ((𝐹𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V)
93, 6, 83bitr4g 314 . . 3 (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
10 onprc 7720 . . . . . 6 ¬ On ∈ V
11 elex 3458 . . . . . 6 (On ∈ dom 𝐹 → On ∈ V)
1210, 11mto 197 . . . . 5 ¬ On ∈ dom 𝐹
13 eleq1 2821 . . . . 5 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹))
1412, 13mtbiri 327 . . . 4 (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹)
152tfrlem13 8318 . . . . . 6 ¬ recs(𝐺) ∈ V
164, 15eqneltri 2852 . . . . 5 ¬ 𝐹 ∈ V
17 reseq2 5930 . . . . . . 7 (𝐴 = On → (𝐹𝐴) = (𝐹 ↾ On))
184tfr1a 8322 . . . . . . . . . 10 (Fun 𝐹 ∧ Lim dom 𝐹)
1918simpli 483 . . . . . . . . 9 Fun 𝐹
20 funrel 6506 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
2119, 20ax-mp 5 . . . . . . . 8 Rel 𝐹
2218simpri 485 . . . . . . . . 9 Lim dom 𝐹
23 limord 6375 . . . . . . . . 9 (Lim dom 𝐹 → Ord dom 𝐹)
24 ordsson 7725 . . . . . . . . 9 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
2522, 23, 24mp2b 10 . . . . . . . 8 dom 𝐹 ⊆ On
26 relssres 5978 . . . . . . . 8 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2721, 25, 26mp2an 692 . . . . . . 7 (𝐹 ↾ On) = 𝐹
2817, 27eqtrdi 2784 . . . . . 6 (𝐴 = On → (𝐹𝐴) = 𝐹)
2928eleq1d 2818 . . . . 5 (𝐴 = On → ((𝐹𝐴) ∈ V ↔ 𝐹 ∈ V))
3016, 29mtbiri 327 . . . 4 (𝐴 = On → ¬ (𝐹𝐴) ∈ V)
3114, 302falsed 376 . . 3 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
329, 31jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
331, 32sylbi 217 1 (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  wss 3898  dom cdm 5621  cres 5623  Rel wrel 5626  Ord word 6313  Oncon0 6314  Lim wlim 6315  Fun wfun 6483   Fn wfn 6484  cfv 6489  recscrecs 8299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300
This theorem is referenced by:  ordtypelem3  9417  ordtypelem9  9423
  Copyright terms: Public domain W3C validator