![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr2b | Structured version Visualization version GIF version |
Description: Without assuming ax-rep 5289, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr2b | ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 7790 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | eqid 2728 | . . . . 5 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem15 8419 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V)) |
4 | tfr.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
5 | 4 | dmeqi 5911 | . . . . 5 ⊢ dom 𝐹 = dom recs(𝐺) |
6 | 5 | eleq2i 2821 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ dom recs(𝐺)) |
7 | 4 | reseq1i 5985 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
8 | 7 | eleq1i 2820 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V) |
9 | 3, 6, 8 | 3bitr4g 313 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
10 | onprc 7786 | . . . . . 6 ⊢ ¬ On ∈ V | |
11 | elex 3492 | . . . . . 6 ⊢ (On ∈ dom 𝐹 → On ∈ V) | |
12 | 10, 11 | mto 196 | . . . . 5 ⊢ ¬ On ∈ dom 𝐹 |
13 | eleq1 2817 | . . . . 5 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹)) | |
14 | 12, 13 | mtbiri 326 | . . . 4 ⊢ (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹) |
15 | 2 | tfrlem13 8417 | . . . . . 6 ⊢ ¬ recs(𝐺) ∈ V |
16 | 4, 15 | eqneltri 2848 | . . . . 5 ⊢ ¬ 𝐹 ∈ V |
17 | reseq2 5984 | . . . . . . 7 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = (𝐹 ↾ On)) | |
18 | 4 | tfr1a 8421 | . . . . . . . . . 10 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
19 | 18 | simpli 482 | . . . . . . . . 9 ⊢ Fun 𝐹 |
20 | funrel 6575 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Rel 𝐹) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . 8 ⊢ Rel 𝐹 |
22 | 18 | simpri 484 | . . . . . . . . 9 ⊢ Lim dom 𝐹 |
23 | limord 6434 | . . . . . . . . 9 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
24 | ordsson 7791 | . . . . . . . . 9 ⊢ (Ord dom 𝐹 → dom 𝐹 ⊆ On) | |
25 | 22, 23, 24 | mp2b 10 | . . . . . . . 8 ⊢ dom 𝐹 ⊆ On |
26 | relssres 6031 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹) | |
27 | 21, 25, 26 | mp2an 690 | . . . . . . 7 ⊢ (𝐹 ↾ On) = 𝐹 |
28 | 17, 27 | eqtrdi 2784 | . . . . . 6 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = 𝐹) |
29 | 28 | eleq1d 2814 | . . . . 5 ⊢ (𝐴 = On → ((𝐹 ↾ 𝐴) ∈ V ↔ 𝐹 ∈ V)) |
30 | 16, 29 | mtbiri 326 | . . . 4 ⊢ (𝐴 = On → ¬ (𝐹 ↾ 𝐴) ∈ V) |
31 | 14, 30 | 2falsed 375 | . . 3 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
32 | 9, 31 | jaoi 855 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
33 | 1, 32 | sylbi 216 | 1 ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 Vcvv 3473 ⊆ wss 3949 dom cdm 5682 ↾ cres 5684 Rel wrel 5687 Ord word 6373 Oncon0 6374 Lim wlim 6375 Fun wfun 6547 Fn wfn 6548 ‘cfv 6553 recscrecs 8397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 |
This theorem is referenced by: ordtypelem3 9551 ordtypelem9 9557 |
Copyright terms: Public domain | W3C validator |