MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2b Structured version   Visualization version   GIF version

Theorem tfr2b 8032
Description: Without assuming ax-rep 5190, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2b (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))

Proof of Theorem tfr2b
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7503 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 eqid 2821 . . . . 5 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
32tfrlem15 8028 . . . 4 (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V))
4 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
54dmeqi 5773 . . . . 5 dom 𝐹 = dom recs(𝐺)
65eleq2i 2904 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom recs(𝐺))
74reseq1i 5849 . . . . 5 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87eleq1i 2903 . . . 4 ((𝐹𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V)
93, 6, 83bitr4g 316 . . 3 (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
10 onprc 7499 . . . . . 6 ¬ On ∈ V
11 elex 3512 . . . . . 6 (On ∈ dom 𝐹 → On ∈ V)
1210, 11mto 199 . . . . 5 ¬ On ∈ dom 𝐹
13 eleq1 2900 . . . . 5 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹))
1412, 13mtbiri 329 . . . 4 (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹)
152tfrlem13 8026 . . . . . 6 ¬ recs(𝐺) ∈ V
164, 15eqneltri 2906 . . . . 5 ¬ 𝐹 ∈ V
17 reseq2 5848 . . . . . . 7 (𝐴 = On → (𝐹𝐴) = (𝐹 ↾ On))
184tfr1a 8030 . . . . . . . . . 10 (Fun 𝐹 ∧ Lim dom 𝐹)
1918simpli 486 . . . . . . . . 9 Fun 𝐹
20 funrel 6372 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
2119, 20ax-mp 5 . . . . . . . 8 Rel 𝐹
2218simpri 488 . . . . . . . . 9 Lim dom 𝐹
23 limord 6250 . . . . . . . . 9 (Lim dom 𝐹 → Ord dom 𝐹)
24 ordsson 7504 . . . . . . . . 9 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
2522, 23, 24mp2b 10 . . . . . . . 8 dom 𝐹 ⊆ On
26 relssres 5893 . . . . . . . 8 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2721, 25, 26mp2an 690 . . . . . . 7 (𝐹 ↾ On) = 𝐹
2817, 27syl6eq 2872 . . . . . 6 (𝐴 = On → (𝐹𝐴) = 𝐹)
2928eleq1d 2897 . . . . 5 (𝐴 = On → ((𝐹𝐴) ∈ V ↔ 𝐹 ∈ V))
3016, 29mtbiri 329 . . . 4 (𝐴 = On → ¬ (𝐹𝐴) ∈ V)
3114, 302falsed 379 . . 3 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
329, 31jaoi 853 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
331, 32sylbi 219 1 (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  wss 3936  dom cdm 5555  cres 5557  Rel wrel 5560  Ord word 6190  Oncon0 6191  Lim wlim 6192  Fun wfun 6349   Fn wfn 6350  cfv 6355  recscrecs 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-wrecs 7947  df-recs 8008
This theorem is referenced by:  ordtypelem3  8984  ordtypelem9  8990
  Copyright terms: Public domain W3C validator