MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2b Structured version   Visualization version   GIF version

Theorem tfr2b 8367
Description: Without assuming ax-rep 5237, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2b (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))

Proof of Theorem tfr2b
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7761 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 eqid 2730 . . . . 5 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
32tfrlem15 8363 . . . 4 (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V))
4 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
54dmeqi 5871 . . . . 5 dom 𝐹 = dom recs(𝐺)
65eleq2i 2821 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom recs(𝐺))
74reseq1i 5949 . . . . 5 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87eleq1i 2820 . . . 4 ((𝐹𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V)
93, 6, 83bitr4g 314 . . 3 (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
10 onprc 7757 . . . . . 6 ¬ On ∈ V
11 elex 3471 . . . . . 6 (On ∈ dom 𝐹 → On ∈ V)
1210, 11mto 197 . . . . 5 ¬ On ∈ dom 𝐹
13 eleq1 2817 . . . . 5 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹))
1412, 13mtbiri 327 . . . 4 (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹)
152tfrlem13 8361 . . . . . 6 ¬ recs(𝐺) ∈ V
164, 15eqneltri 2848 . . . . 5 ¬ 𝐹 ∈ V
17 reseq2 5948 . . . . . . 7 (𝐴 = On → (𝐹𝐴) = (𝐹 ↾ On))
184tfr1a 8365 . . . . . . . . . 10 (Fun 𝐹 ∧ Lim dom 𝐹)
1918simpli 483 . . . . . . . . 9 Fun 𝐹
20 funrel 6536 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
2119, 20ax-mp 5 . . . . . . . 8 Rel 𝐹
2218simpri 485 . . . . . . . . 9 Lim dom 𝐹
23 limord 6396 . . . . . . . . 9 (Lim dom 𝐹 → Ord dom 𝐹)
24 ordsson 7762 . . . . . . . . 9 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
2522, 23, 24mp2b 10 . . . . . . . 8 dom 𝐹 ⊆ On
26 relssres 5996 . . . . . . . 8 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2721, 25, 26mp2an 692 . . . . . . 7 (𝐹 ↾ On) = 𝐹
2817, 27eqtrdi 2781 . . . . . 6 (𝐴 = On → (𝐹𝐴) = 𝐹)
2928eleq1d 2814 . . . . 5 (𝐴 = On → ((𝐹𝐴) ∈ V ↔ 𝐹 ∈ V))
3016, 29mtbiri 327 . . . 4 (𝐴 = On → ¬ (𝐹𝐴) ∈ V)
3114, 302falsed 376 . . 3 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
329, 31jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
331, 32sylbi 217 1 (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  wss 3917  dom cdm 5641  cres 5643  Rel wrel 5646  Ord word 6334  Oncon0 6335  Lim wlim 6336  Fun wfun 6508   Fn wfn 6509  cfv 6514  recscrecs 8342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343
This theorem is referenced by:  ordtypelem3  9480  ordtypelem9  9486
  Copyright terms: Public domain W3C validator