Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfr2b | Structured version Visualization version GIF version |
Description: Without assuming ax-rep 5213, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr2b | ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 7622 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | eqid 2739 | . . . . 5 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem15 8207 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V)) |
4 | tfr.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
5 | 4 | dmeqi 5810 | . . . . 5 ⊢ dom 𝐹 = dom recs(𝐺) |
6 | 5 | eleq2i 2831 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ dom recs(𝐺)) |
7 | 4 | reseq1i 5884 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
8 | 7 | eleq1i 2830 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V) |
9 | 3, 6, 8 | 3bitr4g 313 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
10 | onprc 7618 | . . . . . 6 ⊢ ¬ On ∈ V | |
11 | elex 3448 | . . . . . 6 ⊢ (On ∈ dom 𝐹 → On ∈ V) | |
12 | 10, 11 | mto 196 | . . . . 5 ⊢ ¬ On ∈ dom 𝐹 |
13 | eleq1 2827 | . . . . 5 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹)) | |
14 | 12, 13 | mtbiri 326 | . . . 4 ⊢ (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹) |
15 | 2 | tfrlem13 8205 | . . . . . 6 ⊢ ¬ recs(𝐺) ∈ V |
16 | 4, 15 | eqneltri 2833 | . . . . 5 ⊢ ¬ 𝐹 ∈ V |
17 | reseq2 5883 | . . . . . . 7 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = (𝐹 ↾ On)) | |
18 | 4 | tfr1a 8209 | . . . . . . . . . 10 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
19 | 18 | simpli 483 | . . . . . . . . 9 ⊢ Fun 𝐹 |
20 | funrel 6447 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Rel 𝐹) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . 8 ⊢ Rel 𝐹 |
22 | 18 | simpri 485 | . . . . . . . . 9 ⊢ Lim dom 𝐹 |
23 | limord 6322 | . . . . . . . . 9 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
24 | ordsson 7623 | . . . . . . . . 9 ⊢ (Ord dom 𝐹 → dom 𝐹 ⊆ On) | |
25 | 22, 23, 24 | mp2b 10 | . . . . . . . 8 ⊢ dom 𝐹 ⊆ On |
26 | relssres 5929 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹) | |
27 | 21, 25, 26 | mp2an 688 | . . . . . . 7 ⊢ (𝐹 ↾ On) = 𝐹 |
28 | 17, 27 | eqtrdi 2795 | . . . . . 6 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = 𝐹) |
29 | 28 | eleq1d 2824 | . . . . 5 ⊢ (𝐴 = On → ((𝐹 ↾ 𝐴) ∈ V ↔ 𝐹 ∈ V)) |
30 | 16, 29 | mtbiri 326 | . . . 4 ⊢ (𝐴 = On → ¬ (𝐹 ↾ 𝐴) ∈ V) |
31 | 14, 30 | 2falsed 376 | . . 3 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
32 | 9, 31 | jaoi 853 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
33 | 1, 32 | sylbi 216 | 1 ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 dom cdm 5588 ↾ cres 5590 Rel wrel 5593 Ord word 6262 Oncon0 6263 Lim wlim 6264 Fun wfun 6424 Fn wfn 6425 ‘cfv 6430 recscrecs 8185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 |
This theorem is referenced by: ordtypelem3 9240 ordtypelem9 9246 |
Copyright terms: Public domain | W3C validator |