MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Structured version   Visualization version   GIF version

Theorem prmrec 16841
Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in [ApostolNT] p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
Assertion
Ref Expression
prmrec ¬ 𝐹 ∈ dom ⇝
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem prmrec
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 inss2 4187 . . . . . . . 8 (ℙ ∩ (1...𝑛)) ⊆ (1...𝑛)
2 elinel2 4151 . . . . . . . . . 10 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
3 elfznn 13460 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4 nnrecre 12178 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
54recnd 11151 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
62, 3, 53syl 18 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → (1 / 𝑘) ∈ ℂ)
76rgen 3050 . . . . . . . 8 𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ
81, 7pm3.2i 470 . . . . . . 7 ((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ)
9 fzfi 13886 . . . . . . . 8 (1...𝑛) ∈ Fin
109olci 866 . . . . . . 7 ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)
11 sumss2 15640 . . . . . . 7 ((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0))
128, 10, 11mp2an 692 . . . . . 6 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)
13 elin 3914 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛)))
1413rbaib 538 . . . . . . . 8 (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ))
1514ifbid 4500 . . . . . . 7 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1615sumeq2i 15612 . . . . . 6 Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
1712, 16eqtri 2756 . . . . 5 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
183adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
19 prmnn 16592 . . . . . . . . . . 11 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
2019, 5syl 17 . . . . . . . . . 10 (𝑘 ∈ ℙ → (1 / 𝑘) ∈ ℂ)
2120adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℙ) → (1 / 𝑘) ∈ ℂ)
22 0cnd 11116 . . . . . . . . 9 ((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈ ℂ)
2321, 22ifclda 4512 . . . . . . . 8 (⊤ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
2423mptru 1548 . . . . . . 7 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ
25 eleq1w 2816 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
26 oveq2 7363 . . . . . . . . . 10 (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘))
2725, 26ifbieq1d 4501 . . . . . . . . 9 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2827cbvmptv 5199 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2928fvmpt2 6949 . . . . . . 7 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
3018, 24, 29sylancl 586 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
31 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
32 nnuz 12781 . . . . . . 7 ℕ = (ℤ‘1)
3331, 32eleqtrdi 2843 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
3424a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
3530, 33, 34fsumser 15644 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3617, 35eqtrid 2780 . . . 4 (𝑛 ∈ ℕ → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3736mpteq2ia 5190 . . 3 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
38 prmrec.f . . 3 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
39 1z 12512 . . . . . 6 1 ∈ ℤ
40 seqfn 13927 . . . . . 6 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4139, 40ax-mp 5 . . . . 5 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1)
4232fneq2i 6587 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4341, 42mpbir 231 . . . 4 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ
44 dffn5 6889 . . . 4 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)))
4543, 44mpbi 230 . . 3 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
4637, 38, 453eqtr4i 2766 . 2 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))
4728prmreclem6 16840 . 2 ¬ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) ∈ dom ⇝
4846, 47eqneltri 2852 1 ¬ 𝐹 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1541  wtru 1542  wcel 2113  wral 3048  cin 3897  wss 3898  ifcif 4476  cmpt 5176  dom cdm 5621   Fn wfn 6484  cfv 6489  (class class class)co 7355  Fincfn 8879  cc 11015  0cc0 11017  1c1 11018   + caddc 11020   / cdiv 11785  cn 12136  cz 12479  cuz 12742  ...cfz 13414  seqcseq 13915  cli 15398  Σcsu 15600  cprime 16589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator