MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Structured version   Visualization version   GIF version

Theorem prmrec 16252
Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in [ApostolNT] p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
Assertion
Ref Expression
prmrec ¬ 𝐹 ∈ dom ⇝
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem prmrec
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 inss2 4190 . . . . . . . 8 (ℙ ∩ (1...𝑛)) ⊆ (1...𝑛)
2 elinel2 4157 . . . . . . . . . 10 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
3 elfznn 12936 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4 nnrecre 11672 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
54recnd 10661 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
62, 3, 53syl 18 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → (1 / 𝑘) ∈ ℂ)
76rgen 3143 . . . . . . . 8 𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ
81, 7pm3.2i 474 . . . . . . 7 ((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ)
9 fzfi 13340 . . . . . . . 8 (1...𝑛) ∈ Fin
109olci 863 . . . . . . 7 ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)
11 sumss2 15079 . . . . . . 7 ((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0))
128, 10, 11mp2an 691 . . . . . 6 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)
13 elin 3935 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛)))
1413rbaib 542 . . . . . . . 8 (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ))
1514ifbid 4471 . . . . . . 7 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1615sumeq2i 15052 . . . . . 6 Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
1712, 16eqtri 2847 . . . . 5 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
183adantl 485 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
19 prmnn 16012 . . . . . . . . . . 11 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
2019, 5syl 17 . . . . . . . . . 10 (𝑘 ∈ ℙ → (1 / 𝑘) ∈ ℂ)
2120adantl 485 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℙ) → (1 / 𝑘) ∈ ℂ)
22 0cnd 10626 . . . . . . . . 9 ((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈ ℂ)
2321, 22ifclda 4483 . . . . . . . 8 (⊤ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
2423mptru 1545 . . . . . . 7 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ
25 eleq1w 2898 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
26 oveq2 7153 . . . . . . . . . 10 (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘))
2725, 26ifbieq1d 4472 . . . . . . . . 9 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2827cbvmptv 5155 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2928fvmpt2 6767 . . . . . . 7 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
3018, 24, 29sylancl 589 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
31 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
32 nnuz 12274 . . . . . . 7 ℕ = (ℤ‘1)
3331, 32eleqtrdi 2926 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
3424a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
3530, 33, 34fsumser 15083 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3617, 35syl5eq 2871 . . . 4 (𝑛 ∈ ℕ → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3736mpteq2ia 5143 . . 3 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
38 prmrec.f . . 3 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
39 1z 12005 . . . . . 6 1 ∈ ℤ
40 seqfn 13381 . . . . . 6 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4139, 40ax-mp 5 . . . . 5 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1)
4232fneq2i 6439 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4341, 42mpbir 234 . . . 4 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ
44 dffn5 6712 . . . 4 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)))
4543, 44mpbi 233 . . 3 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
4637, 38, 453eqtr4i 2857 . 2 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))
4728prmreclem6 16251 . 2 ¬ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) ∈ dom ⇝
4846, 47eqneltri 2909 1 ¬ 𝐹 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399  wo 844   = wceq 1538  wtru 1539  wcel 2115  wral 3133  cin 3918  wss 3919  ifcif 4449  cmpt 5132  dom cdm 5542   Fn wfn 6338  cfv 6343  (class class class)co 7145  Fincfn 8499  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   / cdiv 11289  cn 11630  cz 11974  cuz 12236  ...cfz 12890  seqcseq 13369  cli 14837  Σcsu 15038  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-q 12342  df-rp 12383  df-fz 12891  df-fzo 13034  df-fl 13162  df-mod 13238  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator