MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Structured version   Visualization version   GIF version

Theorem prmrec 16030
Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in [ApostolNT] p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
Assertion
Ref Expression
prmrec ¬ 𝐹 ∈ dom ⇝
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem prmrec
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2842 . . . . 5 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
2 oveq2 6930 . . . . 5 (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘))
31, 2ifbieq1d 4330 . . . 4 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
43cbvmptv 4985 . . 3 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
54prmreclem6 16029 . 2 ¬ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) ∈ dom ⇝
6 inss2 4054 . . . . . . . . 9 (ℙ ∩ (1...𝑛)) ⊆ (1...𝑛)
7 elinel2 4023 . . . . . . . . . . 11 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
8 elfznn 12687 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
9 nnrecre 11417 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
109recnd 10405 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
117, 8, 103syl 18 . . . . . . . . . 10 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → (1 / 𝑘) ∈ ℂ)
1211rgen 3104 . . . . . . . . 9 𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ
136, 12pm3.2i 464 . . . . . . . 8 ((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ)
14 fzfi 13090 . . . . . . . . 9 (1...𝑛) ∈ Fin
1514olci 855 . . . . . . . 8 ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)
16 sumss2 14864 . . . . . . . 8 ((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0))
1713, 15, 16mp2an 682 . . . . . . 7 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)
18 elin 4019 . . . . . . . . . 10 (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛)))
1918rbaib 534 . . . . . . . . 9 (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ))
2019ifbid 4329 . . . . . . . 8 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2120sumeq2i 14837 . . . . . . 7 Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
2217, 21eqtri 2802 . . . . . 6 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
238adantl 475 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
24 prmnn 15793 . . . . . . . . . . . 12 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
2524, 10syl 17 . . . . . . . . . . 11 (𝑘 ∈ ℙ → (1 / 𝑘) ∈ ℂ)
2625adantl 475 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℙ) → (1 / 𝑘) ∈ ℂ)
27 0cnd 10369 . . . . . . . . . 10 ((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈ ℂ)
2826, 27ifclda 4341 . . . . . . . . 9 (⊤ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
2928mptru 1609 . . . . . . . 8 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ
304fvmpt2 6552 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
3123, 29, 30sylancl 580 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
32 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
33 nnuz 12029 . . . . . . . 8 ℕ = (ℤ‘1)
3432, 33syl6eleq 2869 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
3529a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
3631, 34, 35fsumser 14868 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3722, 36syl5eq 2826 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3837mpteq2ia 4975 . . . 4 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
39 prmrec.f . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
40 1z 11759 . . . . . . 7 1 ∈ ℤ
41 seqfn 13131 . . . . . . 7 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4240, 41ax-mp 5 . . . . . 6 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1)
4333fneq2i 6231 . . . . . 6 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4442, 43mpbir 223 . . . . 5 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ
45 dffn5 6501 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)))
4644, 45mpbi 222 . . . 4 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
4738, 39, 463eqtr4i 2812 . . 3 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))
4847eleq1i 2850 . 2 (𝐹 ∈ dom ⇝ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) ∈ dom ⇝ )
495, 48mtbir 315 1 ¬ 𝐹 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386  wo 836   = wceq 1601  wtru 1602  wcel 2107  wral 3090  cin 3791  wss 3792  ifcif 4307  cmpt 4965  dom cdm 5355   Fn wfn 6130  cfv 6135  (class class class)co 6922  Fincfn 8241  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   / cdiv 11032  cn 11374  cz 11728  cuz 11992  ...cfz 12643  seqcseq 13119  cli 14623  Σcsu 14824  cprime 15790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-dvds 15388  df-gcd 15623  df-prm 15791  df-pc 15946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator