Step | Hyp | Ref
| Expression |
1 | | inss2 4169 |
. . . . . . . 8
⊢ (ℙ
∩ (1...𝑛)) ⊆
(1...𝑛) |
2 | | elinel2 4135 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (ℙ ∩
(1...𝑛)) → 𝑘 ∈ (1...𝑛)) |
3 | | elfznn 13284 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ) |
4 | | nnrecre 12015 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
5 | 4 | recnd 11004 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℂ) |
6 | 2, 3, 5 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑘 ∈ (ℙ ∩
(1...𝑛)) → (1 / 𝑘) ∈
ℂ) |
7 | 6 | rgen 3076 |
. . . . . . . 8
⊢
∀𝑘 ∈
(ℙ ∩ (1...𝑛))(1 /
𝑘) ∈
ℂ |
8 | 1, 7 | pm3.2i 471 |
. . . . . . 7
⊢ ((ℙ
∩ (1...𝑛)) ⊆
(1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩
(1...𝑛))(1 / 𝑘) ∈
ℂ) |
9 | | fzfi 13690 |
. . . . . . . 8
⊢
(1...𝑛) ∈
Fin |
10 | 9 | olci 863 |
. . . . . . 7
⊢
((1...𝑛) ⊆
(ℤ≥‘1) ∨ (1...𝑛) ∈ Fin) |
11 | | sumss2 15436 |
. . . . . . 7
⊢
((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆
(ℤ≥‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩
(1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)) |
12 | 8, 10, 11 | mp2an 689 |
. . . . . 6
⊢
Σ𝑘 ∈
(ℙ ∩ (1...𝑛))(1 /
𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) |
13 | | elin 3908 |
. . . . . . . . 9
⊢ (𝑘 ∈ (ℙ ∩
(1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛))) |
14 | 13 | rbaib 539 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ)) |
15 | 14 | ifbid 4488 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
16 | 15 | sumeq2i 15409 |
. . . . . 6
⊢
Σ𝑘 ∈
(1...𝑛)if(𝑘 ∈ (ℙ ∩
(1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) |
17 | 12, 16 | eqtri 2768 |
. . . . 5
⊢
Σ𝑘 ∈
(ℙ ∩ (1...𝑛))(1 /
𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) |
18 | 3 | adantl 482 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
19 | | prmnn 16377 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℙ → 𝑘 ∈
ℕ) |
20 | 19, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℙ → (1 /
𝑘) ∈
ℂ) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℙ) → (1 / 𝑘) ∈ ℂ) |
22 | | 0cnd 10969 |
. . . . . . . . 9
⊢
((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈
ℂ) |
23 | 21, 22 | ifclda 4500 |
. . . . . . . 8
⊢ (⊤
→ if(𝑘 ∈ ℙ,
(1 / 𝑘), 0) ∈
ℂ) |
24 | 23 | mptru 1549 |
. . . . . . 7
⊢ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ |
25 | | eleq1w 2823 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
26 | | oveq2 7279 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘)) |
27 | 25, 26 | ifbieq1d 4489 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
28 | 27 | cbvmptv 5192 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
29 | 28 | fvmpt2 6883 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) →
((𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
30 | 18, 24, 29 | sylancl 586 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
31 | | id 22 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
32 | | nnuz 12620 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
33 | 31, 32 | eleqtrdi 2851 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
34 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) |
35 | 30, 33, 34 | fsumser 15440 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)) |
36 | 17, 35 | eqtrid 2792 |
. . . 4
⊢ (𝑛 ∈ ℕ →
Σ𝑘 ∈ (ℙ
∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)) |
37 | 36 | mpteq2ia 5182 |
. . 3
⊢ (𝑛 ∈ ℕ ↦
Σ𝑘 ∈ (ℙ
∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)) |
38 | | prmrec.f |
. . 3
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩
(1...𝑛))(1 / 𝑘)) |
39 | | 1z 12350 |
. . . . . 6
⊢ 1 ∈
ℤ |
40 | | seqfn 13731 |
. . . . . 6
⊢ (1 ∈
ℤ → seq1( + , (𝑚
∈ ℕ ↦ if(𝑚
∈ ℙ, (1 / 𝑚),
0))) Fn (ℤ≥‘1)) |
41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn
(ℤ≥‘1) |
42 | 32 | fneq2i 6529 |
. . . . 5
⊢ (seq1( +
, (𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn ℕ ↔
seq1( + , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0))) Fn
(ℤ≥‘1)) |
43 | 41, 42 | mpbir 230 |
. . . 4
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn
ℕ |
44 | | dffn5 6825 |
. . . 4
⊢ (seq1( +
, (𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) Fn ℕ ↔
seq1( + , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0))) =
(𝑛 ∈ ℕ ↦
(seq1( + , (𝑚 ∈
ℕ ↦ if(𝑚 ∈
ℙ, (1 / 𝑚),
0)))‘𝑛))) |
45 | 43, 44 | mpbi 229 |
. . 3
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( +
, (𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ, (1 /
𝑚), 0)))‘𝑛)) |
46 | 37, 38, 45 | 3eqtr4i 2778 |
. 2
⊢ 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) |
47 | 28 | prmreclem6 16620 |
. 2
⊢ ¬
seq1( + , (𝑚 ∈ ℕ
↦ if(𝑚 ∈
ℙ, (1 / 𝑚), 0)))
∈ dom ⇝ |
48 | 46, 47 | eqneltri 2834 |
1
⊢ ¬
𝐹 ∈ dom
⇝ |