MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Structured version   Visualization version   GIF version

Theorem prmrec 16926
Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in [ApostolNT] p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
Assertion
Ref Expression
prmrec ¬ 𝐹 ∈ dom ⇝
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem prmrec
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 inss2 4231 . . . . . . . 8 (ℙ ∩ (1...𝑛)) ⊆ (1...𝑛)
2 elinel2 4197 . . . . . . . . . 10 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
3 elfznn 13586 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4 nnrecre 12308 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
54recnd 11294 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
62, 3, 53syl 18 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → (1 / 𝑘) ∈ ℂ)
76rgen 3053 . . . . . . . 8 𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ
81, 7pm3.2i 469 . . . . . . 7 ((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ)
9 fzfi 13994 . . . . . . . 8 (1...𝑛) ∈ Fin
109olci 864 . . . . . . 7 ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)
11 sumss2 15732 . . . . . . 7 ((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0))
128, 10, 11mp2an 690 . . . . . 6 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)
13 elin 3963 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛)))
1413rbaib 537 . . . . . . . 8 (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ))
1514ifbid 4556 . . . . . . 7 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1615sumeq2i 15705 . . . . . 6 Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
1712, 16eqtri 2754 . . . . 5 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
183adantl 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
19 prmnn 16677 . . . . . . . . . . 11 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
2019, 5syl 17 . . . . . . . . . 10 (𝑘 ∈ ℙ → (1 / 𝑘) ∈ ℂ)
2120adantl 480 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℙ) → (1 / 𝑘) ∈ ℂ)
22 0cnd 11259 . . . . . . . . 9 ((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈ ℂ)
2321, 22ifclda 4568 . . . . . . . 8 (⊤ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
2423mptru 1541 . . . . . . 7 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ
25 eleq1w 2809 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
26 oveq2 7434 . . . . . . . . . 10 (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘))
2725, 26ifbieq1d 4557 . . . . . . . . 9 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2827cbvmptv 5268 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2928fvmpt2 7022 . . . . . . 7 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
3018, 24, 29sylancl 584 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
31 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
32 nnuz 12919 . . . . . . 7 ℕ = (ℤ‘1)
3331, 32eleqtrdi 2836 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
3424a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
3530, 33, 34fsumser 15736 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3617, 35eqtrid 2778 . . . 4 (𝑛 ∈ ℕ → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3736mpteq2ia 5258 . . 3 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
38 prmrec.f . . 3 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
39 1z 12646 . . . . . 6 1 ∈ ℤ
40 seqfn 14035 . . . . . 6 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4139, 40ax-mp 5 . . . . 5 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1)
4232fneq2i 6660 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4341, 42mpbir 230 . . . 4 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ
44 dffn5 6963 . . . 4 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)))
4543, 44mpbi 229 . . 3 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
4637, 38, 453eqtr4i 2764 . 2 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))
4728prmreclem6 16925 . 2 ¬ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) ∈ dom ⇝
4846, 47eqneltri 2845 1 ¬ 𝐹 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394  wo 845   = wceq 1534  wtru 1535  wcel 2099  wral 3051  cin 3946  wss 3947  ifcif 4533  cmpt 5238  dom cdm 5684   Fn wfn 6551  cfv 6556  (class class class)co 7426  Fincfn 8976  cc 11158  0cc0 11160  1c1 11161   + caddc 11163   / cdiv 11923  cn 12266  cz 12612  cuz 12876  ...cfz 13540  seqcseq 14023  cli 15488  Σcsu 15692  cprime 16674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-inf2 9686  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-oadd 8502  df-er 8736  df-map 8859  df-pm 8860  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-inf 9488  df-oi 9555  df-dju 9946  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12599  df-z 12613  df-uz 12877  df-q 12987  df-rp 13031  df-fz 13541  df-fzo 13684  df-fl 13814  df-mod 13892  df-seq 14024  df-exp 14084  df-hash 14350  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-clim 15492  df-rlim 15493  df-sum 15693  df-dvds 16259  df-gcd 16497  df-prm 16675  df-pc 16841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator