MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Structured version   Visualization version   GIF version

Theorem prmrec 16969
Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in [ApostolNT] p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
Assertion
Ref Expression
prmrec ¬ 𝐹 ∈ dom ⇝
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem prmrec
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 inss2 4259 . . . . . . . 8 (ℙ ∩ (1...𝑛)) ⊆ (1...𝑛)
2 elinel2 4225 . . . . . . . . . 10 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
3 elfznn 13613 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4 nnrecre 12335 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
54recnd 11318 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
62, 3, 53syl 18 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) → (1 / 𝑘) ∈ ℂ)
76rgen 3069 . . . . . . . 8 𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ
81, 7pm3.2i 470 . . . . . . 7 ((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ)
9 fzfi 14023 . . . . . . . 8 (1...𝑛) ∈ Fin
109olci 865 . . . . . . 7 ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)
11 sumss2 15774 . . . . . . 7 ((((ℙ ∩ (1...𝑛)) ⊆ (1...𝑛) ∧ ∀𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) ∈ ℂ) ∧ ((1...𝑛) ⊆ (ℤ‘1) ∨ (1...𝑛) ∈ Fin)) → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0))
128, 10, 11mp2an 691 . . . . . 6 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0)
13 elin 3992 . . . . . . . . 9 (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∈ (1...𝑛)))
1413rbaib 538 . . . . . . . 8 (𝑘 ∈ (1...𝑛) → (𝑘 ∈ (ℙ ∩ (1...𝑛)) ↔ 𝑘 ∈ ℙ))
1514ifbid 4571 . . . . . . 7 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1615sumeq2i 15746 . . . . . 6 Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ (ℙ ∩ (1...𝑛)), (1 / 𝑘), 0) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
1712, 16eqtri 2768 . . . . 5 Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)
183adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
19 prmnn 16721 . . . . . . . . . . 11 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
2019, 5syl 17 . . . . . . . . . 10 (𝑘 ∈ ℙ → (1 / 𝑘) ∈ ℂ)
2120adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℙ) → (1 / 𝑘) ∈ ℂ)
22 0cnd 11283 . . . . . . . . 9 ((⊤ ∧ ¬ 𝑘 ∈ ℙ) → 0 ∈ ℂ)
2321, 22ifclda 4583 . . . . . . . 8 (⊤ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
2423mptru 1544 . . . . . . 7 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ
25 eleq1w 2827 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
26 oveq2 7456 . . . . . . . . . 10 (𝑚 = 𝑘 → (1 / 𝑚) = (1 / 𝑘))
2725, 26ifbieq1d 4572 . . . . . . . . 9 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2827cbvmptv 5279 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)) = (𝑘 ∈ ℕ ↦ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2928fvmpt2 7040 . . . . . . 7 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
3018, 24, 29sylancl 585 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
31 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
32 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
3331, 32eleqtrdi 2854 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
3424a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
3530, 33, 34fsumser 15778 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3617, 35eqtrid 2792 . . . 4 (𝑛 ∈ ℕ → Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘) = (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
3736mpteq2ia 5269 . . 3 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
38 prmrec.f . . 3 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ℙ ∩ (1...𝑛))(1 / 𝑘))
39 1z 12673 . . . . . 6 1 ∈ ℤ
40 seqfn 14064 . . . . . 6 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4139, 40ax-mp 5 . . . . 5 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1)
4232fneq2i 6677 . . . . 5 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn (ℤ‘1))
4341, 42mpbir 231 . . . 4 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ
44 dffn5 6980 . . . 4 (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛)))
4543, 44mpbi 230 . . 3 seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))‘𝑛))
4637, 38, 453eqtr4i 2778 . 2 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0)))
4728prmreclem6 16968 . 2 ¬ seq1( + , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (1 / 𝑚), 0))) ∈ dom ⇝
4846, 47eqneltri 2863 1 ¬ 𝐹 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846   = wceq 1537  wtru 1538  wcel 2108  wral 3067  cin 3975  wss 3976  ifcif 4548  cmpt 5249  dom cdm 5700   Fn wfn 6568  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   / cdiv 11947  cn 12293  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530  Σcsu 15734  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator