| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pinftynrr | Structured version Visualization version GIF version | ||
| Description: The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-pinftynrr | ⊢ ¬ +∞ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-pinfty 37193 | . 2 ⊢ +∞ = (+∞ei‘0) | |
| 2 | bj-inftyexpidisj 37183 | . 2 ⊢ ¬ (+∞ei‘0) ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2847 | 1 ⊢ ¬ +∞ ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ‘cfv 6486 ℂcc 11026 0cc0 11028 +∞eicinftyexpi 37179 +∞cpinfty 37192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-cnex 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-c 11034 df-bj-inftyexpi 37180 df-bj-pinfty 37193 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |