Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pinftynrr Structured version   Visualization version   GIF version

Theorem bj-pinftynrr 37216
Description: The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-pinftynrr ¬ +∞ ∈ ℂ

Proof of Theorem bj-pinftynrr
StepHypRef Expression
1 df-bj-pinfty 37214 . 2 +∞ = (+∞ei‘0)
2 bj-inftyexpidisj 37204 . 2 ¬ (+∞ei‘0) ∈ ℂ
31, 2eqneltri 2859 1 ¬ +∞ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  cfv 6559  cc 11149  0cc0 11151  +∞eicinftyexpi 37200  +∞cpinfty 37213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430  ax-un 7751  ax-reg 9628  ax-cnex 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-iota 6512  df-fun 6561  df-fn 6562  df-fv 6567  df-c 11157  df-bj-inftyexpi 37201  df-bj-pinfty 37214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator