Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pinftynrr Structured version   Visualization version   GIF version

Theorem bj-pinftynrr 36103
Description: The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-pinftynrr ¬ +∞ ∈ ℂ

Proof of Theorem bj-pinftynrr
StepHypRef Expression
1 df-bj-pinfty 36101 . 2 +∞ = (+∞ei‘0)
2 bj-inftyexpidisj 36091 . 2 ¬ (+∞ei‘0) ∈ ℂ
31, 2eqneltri 2853 1 ¬ +∞ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  cfv 6544  cc 11108  0cc0 11110  +∞eicinftyexpi 36087  +∞cpinfty 36100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-reg 9587  ax-cnex 11166
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-c 11116  df-bj-inftyexpi 36088  df-bj-pinfty 36101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator