| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pinftynrr | Structured version Visualization version GIF version | ||
| Description: The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-pinftynrr | ⊢ ¬ +∞ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-pinfty 37214 | . 2 ⊢ +∞ = (+∞ei‘0) | |
| 2 | bj-inftyexpidisj 37204 | . 2 ⊢ ¬ (+∞ei‘0) ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2859 | 1 ⊢ ¬ +∞ ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ‘cfv 6559 ℂcc 11149 0cc0 11151 +∞eicinftyexpi 37200 +∞cpinfty 37213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 ax-un 7751 ax-reg 9628 ax-cnex 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-iota 6512 df-fun 6561 df-fn 6562 df-fv 6567 df-c 11157 df-bj-inftyexpi 37201 df-bj-pinfty 37214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |