| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 00lsp | Structured version Visualization version GIF version | ||
| Description: fvco4i 6985 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| 00lsp | ⊢ ∅ = (LSpan‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 2 | base0 17238 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 3 | 00lss 20903 | . . . 4 ⊢ ∅ = (LSubSp‘∅) | |
| 4 | eqid 2736 | . . . 4 ⊢ (LSpan‘∅) = (LSpan‘∅) | |
| 5 | 2, 3, 4 | lspfval 20935 | . . 3 ⊢ (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏})) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) |
| 7 | eqid 2736 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 8 | 7 | dmmpt 6234 | . . . 4 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} |
| 9 | rab0 4366 | . . . . . . . . 9 ⊢ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∅ | |
| 10 | 9 | inteqi 4931 | . . . . . . . 8 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∩ ∅ |
| 11 | int0 4943 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtri 2759 | . . . . . . 7 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = V |
| 13 | vprc 5290 | . . . . . . 7 ⊢ ¬ V ∈ V | |
| 14 | 12, 13 | eqneltri 2854 | . . . . . 6 ⊢ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
| 15 | 14 | rgenw 3056 | . . . . 5 ⊢ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
| 16 | rabeq0 4368 | . . . . 5 ⊢ ({𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V) | |
| 17 | 15, 16 | mpbir 231 | . . . 4 ⊢ {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ |
| 18 | 8, 17 | eqtri 2759 | . . 3 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
| 19 | mptrel 5809 | . . . 4 ⊢ Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 20 | reldm0 5912 | . . . 4 ⊢ (Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅)) | |
| 21 | 19, 20 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅) |
| 22 | 18, 21 | mpbir 231 | . 2 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
| 23 | 6, 22 | eqtr2i 2760 | 1 ⊢ ∅ = (LSpan‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∩ cint 4927 ↦ cmpt 5206 dom cdm 5659 Rel wrel 5664 ‘cfv 6536 LSpanclspn 20933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-slot 17206 df-ndx 17218 df-base 17234 df-lss 20894 df-lsp 20934 |
| This theorem is referenced by: rspval 21177 |
| Copyright terms: Public domain | W3C validator |