MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lsp Structured version   Visualization version   GIF version

Theorem 00lsp 20894
Description: fvco4i 6965 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
00lsp ∅ = (LSpan‘∅)

Proof of Theorem 00lsp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5265 . . 3 ∅ ∈ V
2 base0 17191 . . . 4 ∅ = (Base‘∅)
3 00lss 20854 . . . 4 ∅ = (LSubSp‘∅)
4 eqid 2730 . . . 4 (LSpan‘∅) = (LSpan‘∅)
52, 3, 4lspfval 20886 . . 3 (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}))
61, 5ax-mp 5 . 2 (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
7 eqid 2730 . . . . 5 (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
87dmmpt 6216 . . . 4 dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V}
9 rab0 4352 . . . . . . . . 9 {𝑏 ∈ ∅ ∣ 𝑎𝑏} = ∅
109inteqi 4917 . . . . . . . 8 {𝑏 ∈ ∅ ∣ 𝑎𝑏} =
11 int0 4929 . . . . . . . 8 ∅ = V
1210, 11eqtri 2753 . . . . . . 7 {𝑏 ∈ ∅ ∣ 𝑎𝑏} = V
13 vprc 5273 . . . . . . 7 ¬ V ∈ V
1412, 13eqneltri 2848 . . . . . 6 ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V
1514rgenw 3049 . . . . 5 𝑎 ∈ 𝒫 ∅ ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V
16 rabeq0 4354 . . . . 5 ({𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V)
1715, 16mpbir 231 . . . 4 {𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V} = ∅
188, 17eqtri 2753 . . 3 dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅
19 mptrel 5791 . . . 4 Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
20 reldm0 5894 . . . 4 (Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅))
2119, 20ax-mp 5 . . 3 ((𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅)
2218, 21mpbir 231 . 2 (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅
236, 22eqtr2i 2754 1 ∅ = (LSpan‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   cint 4913  cmpt 5191  dom cdm 5641  Rel wrel 5646  cfv 6514  LSpanclspn 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-lss 20845  df-lsp 20885
This theorem is referenced by:  rspval  21128
  Copyright terms: Public domain W3C validator