| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 00lsp | Structured version Visualization version GIF version | ||
| Description: fvco4i 6923 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| 00lsp | ⊢ ∅ = (LSpan‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 2 | base0 17122 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 3 | 00lss 20872 | . . . 4 ⊢ ∅ = (LSubSp‘∅) | |
| 4 | eqid 2731 | . . . 4 ⊢ (LSpan‘∅) = (LSpan‘∅) | |
| 5 | 2, 3, 4 | lspfval 20904 | . . 3 ⊢ (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏})) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) |
| 7 | eqid 2731 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 8 | 7 | dmmpt 6187 | . . . 4 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} |
| 9 | rab0 4336 | . . . . . . . . 9 ⊢ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∅ | |
| 10 | 9 | inteqi 4901 | . . . . . . . 8 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∩ ∅ |
| 11 | int0 4912 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtri 2754 | . . . . . . 7 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = V |
| 13 | vprc 5253 | . . . . . . 7 ⊢ ¬ V ∈ V | |
| 14 | 12, 13 | eqneltri 2850 | . . . . . 6 ⊢ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
| 15 | 14 | rgenw 3051 | . . . . 5 ⊢ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
| 16 | rabeq0 4338 | . . . . 5 ⊢ ({𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V) | |
| 17 | 15, 16 | mpbir 231 | . . . 4 ⊢ {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ |
| 18 | 8, 17 | eqtri 2754 | . . 3 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
| 19 | mptrel 5765 | . . . 4 ⊢ Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 20 | reldm0 5868 | . . . 4 ⊢ (Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅)) | |
| 21 | 19, 20 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅) |
| 22 | 18, 21 | mpbir 231 | . 2 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
| 23 | 6, 22 | eqtr2i 2755 | 1 ⊢ ∅ = (LSpan‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ∩ cint 4897 ↦ cmpt 5172 dom cdm 5616 Rel wrel 5621 ‘cfv 6481 LSpanclspn 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-lss 20863 df-lsp 20903 |
| This theorem is referenced by: rspval 21146 |
| Copyright terms: Public domain | W3C validator |