|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 00lsp | Structured version Visualization version GIF version | ||
| Description: fvco4i 7009 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| 00lsp | ⊢ ∅ = (LSpan‘∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 5306 | . . 3 ⊢ ∅ ∈ V | |
| 2 | base0 17253 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 3 | 00lss 20940 | . . . 4 ⊢ ∅ = (LSubSp‘∅) | |
| 4 | eqid 2736 | . . . 4 ⊢ (LSpan‘∅) = (LSpan‘∅) | |
| 5 | 2, 3, 4 | lspfval 20972 | . . 3 ⊢ (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏})) | 
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | 
| 7 | eqid 2736 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 8 | 7 | dmmpt 6259 | . . . 4 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} | 
| 9 | rab0 4385 | . . . . . . . . 9 ⊢ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∅ | |
| 10 | 9 | inteqi 4949 | . . . . . . . 8 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∩ ∅ | 
| 11 | int0 4961 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtri 2764 | . . . . . . 7 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = V | 
| 13 | vprc 5314 | . . . . . . 7 ⊢ ¬ V ∈ V | |
| 14 | 12, 13 | eqneltri 2859 | . . . . . 6 ⊢ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V | 
| 15 | 14 | rgenw 3064 | . . . . 5 ⊢ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V | 
| 16 | rabeq0 4387 | . . . . 5 ⊢ ({𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V) | |
| 17 | 15, 16 | mpbir 231 | . . . 4 ⊢ {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ | 
| 18 | 8, 17 | eqtri 2764 | . . 3 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ | 
| 19 | mptrel 5834 | . . . 4 ⊢ Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 20 | reldm0 5937 | . . . 4 ⊢ (Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅)) | |
| 21 | 19, 20 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅) | 
| 22 | 18, 21 | mpbir 231 | . 2 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ | 
| 23 | 6, 22 | eqtr2i 2765 | 1 ⊢ ∅ = (LSpan‘∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 Vcvv 3479 ⊆ wss 3950 ∅c0 4332 𝒫 cpw 4599 ∩ cint 4945 ↦ cmpt 5224 dom cdm 5684 Rel wrel 5689 ‘cfv 6560 LSpanclspn 20970 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-1cn 11214 ax-addcl 11216 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-nn 12268 df-slot 17220 df-ndx 17232 df-base 17249 df-lss 20931 df-lsp 20971 | 
| This theorem is referenced by: rspval 21222 | 
| Copyright terms: Public domain | W3C validator |