Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 00lsp | Structured version Visualization version GIF version |
Description: fvco4i 6851 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
00lsp | ⊢ ∅ = (LSpan‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
2 | base0 16845 | . . . 4 ⊢ ∅ = (Base‘∅) | |
3 | 00lss 20118 | . . . 4 ⊢ ∅ = (LSubSp‘∅) | |
4 | eqid 2738 | . . . 4 ⊢ (LSpan‘∅) = (LSpan‘∅) | |
5 | 2, 3, 4 | lspfval 20150 | . . 3 ⊢ (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏})) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) |
7 | eqid 2738 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
8 | 7 | dmmpt 6132 | . . . 4 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} |
9 | rab0 4313 | . . . . . . . . 9 ⊢ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∅ | |
10 | 9 | inteqi 4880 | . . . . . . . 8 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∩ ∅ |
11 | int0 4890 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
12 | 10, 11 | eqtri 2766 | . . . . . . 7 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = V |
13 | vprc 5234 | . . . . . . 7 ⊢ ¬ V ∈ V | |
14 | 12, 13 | eqneltri 2832 | . . . . . 6 ⊢ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
15 | 14 | rgenw 3075 | . . . . 5 ⊢ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
16 | rabeq0 4315 | . . . . 5 ⊢ ({𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V) | |
17 | 15, 16 | mpbir 230 | . . . 4 ⊢ {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ |
18 | 8, 17 | eqtri 2766 | . . 3 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
19 | mptrel 5724 | . . . 4 ⊢ Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
20 | reldm0 5826 | . . . 4 ⊢ (Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅)) | |
21 | 19, 20 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅) |
22 | 18, 21 | mpbir 230 | . 2 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
23 | 6, 22 | eqtr2i 2767 | 1 ⊢ ∅ = (LSpan‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∩ cint 4876 ↦ cmpt 5153 dom cdm 5580 Rel wrel 5585 ‘cfv 6418 LSpanclspn 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-lss 20109 df-lsp 20149 |
This theorem is referenced by: rspval 20376 |
Copyright terms: Public domain | W3C validator |