MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lsp Structured version   Visualization version   GIF version

Theorem 00lsp 20902
Description: fvco4i 6928 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
00lsp ∅ = (LSpan‘∅)

Proof of Theorem 00lsp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5249 . . 3 ∅ ∈ V
2 base0 17143 . . . 4 ∅ = (Base‘∅)
3 00lss 20862 . . . 4 ∅ = (LSubSp‘∅)
4 eqid 2729 . . . 4 (LSpan‘∅) = (LSpan‘∅)
52, 3, 4lspfval 20894 . . 3 (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}))
61, 5ax-mp 5 . 2 (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
7 eqid 2729 . . . . 5 (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
87dmmpt 6193 . . . 4 dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V}
9 rab0 4339 . . . . . . . . 9 {𝑏 ∈ ∅ ∣ 𝑎𝑏} = ∅
109inteqi 4903 . . . . . . . 8 {𝑏 ∈ ∅ ∣ 𝑎𝑏} =
11 int0 4915 . . . . . . . 8 ∅ = V
1210, 11eqtri 2752 . . . . . . 7 {𝑏 ∈ ∅ ∣ 𝑎𝑏} = V
13 vprc 5257 . . . . . . 7 ¬ V ∈ V
1412, 13eqneltri 2847 . . . . . 6 ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V
1514rgenw 3048 . . . . 5 𝑎 ∈ 𝒫 ∅ ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V
16 rabeq0 4341 . . . . 5 ({𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V)
1715, 16mpbir 231 . . . 4 {𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V} = ∅
188, 17eqtri 2752 . . 3 dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅
19 mptrel 5772 . . . 4 Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
20 reldm0 5874 . . . 4 (Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅))
2119, 20ax-mp 5 . . 3 ((𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅)
2218, 21mpbir 231 . 2 (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅
236, 22eqtr2i 2753 1 ∅ = (LSpan‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   cint 4899  cmpt 5176  dom cdm 5623  Rel wrel 5628  cfv 6486  LSpanclspn 20892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-lss 20853  df-lsp 20893
This theorem is referenced by:  rspval  21136
  Copyright terms: Public domain W3C validator