| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 00lsp | Structured version Visualization version GIF version | ||
| Description: fvco4i 6929 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| 00lsp | ⊢ ∅ = (LSpan‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 2 | base0 17127 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 3 | 00lss 20876 | . . . 4 ⊢ ∅ = (LSubSp‘∅) | |
| 4 | eqid 2733 | . . . 4 ⊢ (LSpan‘∅) = (LSpan‘∅) | |
| 5 | 2, 3, 4 | lspfval 20908 | . . 3 ⊢ (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏})) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) |
| 7 | eqid 2733 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 8 | 7 | dmmpt 6192 | . . . 4 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} |
| 9 | rab0 4335 | . . . . . . . . 9 ⊢ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∅ | |
| 10 | 9 | inteqi 4901 | . . . . . . . 8 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = ∩ ∅ |
| 11 | int0 4912 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtri 2756 | . . . . . . 7 ⊢ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} = V |
| 13 | vprc 5255 | . . . . . . 7 ⊢ ¬ V ∈ V | |
| 14 | 12, 13 | eqneltri 2852 | . . . . . 6 ⊢ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
| 15 | 14 | rgenw 3052 | . . . . 5 ⊢ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V |
| 16 | rabeq0 4337 | . . . . 5 ⊢ ({𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V) | |
| 17 | 15, 16 | mpbir 231 | . . . 4 ⊢ {𝑎 ∈ 𝒫 ∅ ∣ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏} ∈ V} = ∅ |
| 18 | 8, 17 | eqtri 2756 | . . 3 ⊢ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
| 19 | mptrel 5769 | . . . 4 ⊢ Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) | |
| 20 | reldm0 5872 | . . . 4 ⊢ (Rel (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅)) | |
| 21 | 19, 20 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅) |
| 22 | 18, 21 | mpbir 231 | . 2 ⊢ (𝑎 ∈ 𝒫 ∅ ↦ ∩ {𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏}) = ∅ |
| 23 | 6, 22 | eqtr2i 2757 | 1 ⊢ ∅ = (LSpan‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 ∩ cint 4897 ↦ cmpt 5174 dom cdm 5619 Rel wrel 5624 ‘cfv 6486 LSpanclspn 20906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 df-lss 20867 df-lsp 20907 |
| This theorem is referenced by: rspval 21150 |
| Copyright terms: Public domain | W3C validator |