| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqnetrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqnetrrid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrrid | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqnetrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 4 | 2, 3 | eqnetrrd 2993 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: xpcoidgend 14941 fclsfnflim 23914 ptcmplem2 23940 vieta1lem1 26218 vieta1lem2 26219 fsuppcurry1 32648 fsuppcurry2 32649 constrresqrtcl 33767 signsvfpn 34576 signsvfnn 34577 finxpreclem2 37378 finxp1o 37380 cdleme3h 40229 cdleme7ga 40242 imo72b2lem0 44154 imo72b2lem1 44158 fourierdlem42 46147 |
| Copyright terms: Public domain | W3C validator |