MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnetrrid Structured version   Visualization version   GIF version

Theorem eqnetrrid 3015
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
eqnetrrid.1 𝐵 = 𝐴
eqnetrrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrrid (𝜑𝐴𝐶)

Proof of Theorem eqnetrrid
StepHypRef Expression
1 eqnetrrid.1 . . 3 𝐵 = 𝐴
21a1i 11 . 2 (𝜑𝐵 = 𝐴)
3 eqnetrrid.2 . 2 (𝜑𝐵𝐶)
42, 3eqnetrrd 3008 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-cleq 2723  df-ne 2940
This theorem is referenced by:  xpcoidgend  14929  fclsfnflim  23851  ptcmplem2  23877  vieta1lem1  26162  vieta1lem2  26163  fsuppcurry1  32383  fsuppcurry2  32384  signsvfpn  34060  signsvfnn  34061  finxpreclem2  36735  finxp1o  36737  cdleme3h  39570  cdleme7ga  39583  imo72b2lem1  43384  fourierdlem42  45324
  Copyright terms: Public domain W3C validator