| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqnetrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqnetrrid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrrid | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqnetrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 4 | 2, 3 | eqnetrrd 2996 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: xpcoidgend 14877 fclsfnflim 23937 ptcmplem2 23963 vieta1lem1 26240 vieta1lem2 26241 fsuppcurry1 32699 fsuppcurry2 32700 constrresqrtcl 33782 signsvfpn 34590 signsvfnn 34591 finxpreclem2 37424 finxp1o 37426 cdleme3h 40274 cdleme7ga 40287 imo72b2lem0 44198 imo72b2lem1 44202 fourierdlem42 46187 |
| Copyright terms: Public domain | W3C validator |