MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnetrrid Structured version   Visualization version   GIF version

Theorem eqnetrrid 3000
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
eqnetrrid.1 𝐵 = 𝐴
eqnetrrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrrid (𝜑𝐴𝐶)

Proof of Theorem eqnetrrid
StepHypRef Expression
1 eqnetrrid.1 . . 3 𝐵 = 𝐴
21a1i 11 . 2 (𝜑𝐵 = 𝐴)
3 eqnetrrid.2 . 2 (𝜑𝐵𝐶)
42, 3eqnetrrd 2993 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926
This theorem is referenced by:  xpcoidgend  14941  fclsfnflim  23914  ptcmplem2  23940  vieta1lem1  26218  vieta1lem2  26219  fsuppcurry1  32648  fsuppcurry2  32649  constrresqrtcl  33767  signsvfpn  34576  signsvfnn  34577  finxpreclem2  37378  finxp1o  37380  cdleme3h  40229  cdleme7ga  40242  imo72b2lem0  44154  imo72b2lem1  44158  fourierdlem42  46147
  Copyright terms: Public domain W3C validator