![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnetrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
eqnetrrid.1 | ⊢ 𝐵 = 𝐴 |
eqnetrrid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
eqnetrrid | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqnetrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 2, 3 | eqnetrrd 3007 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ne 2939 |
This theorem is referenced by: xpcoidgend 15011 fclsfnflim 24051 ptcmplem2 24077 vieta1lem1 26367 vieta1lem2 26368 fsuppcurry1 32743 fsuppcurry2 32744 signsvfpn 34579 signsvfnn 34580 finxpreclem2 37373 finxp1o 37375 cdleme3h 40218 cdleme7ga 40231 imo72b2lem0 44155 imo72b2lem1 44159 fourierdlem42 46105 |
Copyright terms: Public domain | W3C validator |