| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqnetrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqnetrrid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrrid | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqnetrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 4 | 2, 3 | eqnetrrd 2994 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: xpcoidgend 14948 fclsfnflim 23921 ptcmplem2 23947 vieta1lem1 26225 vieta1lem2 26226 fsuppcurry1 32655 fsuppcurry2 32656 constrresqrtcl 33774 signsvfpn 34583 signsvfnn 34584 finxpreclem2 37385 finxp1o 37387 cdleme3h 40236 cdleme7ga 40249 imo72b2lem0 44161 imo72b2lem1 44165 fourierdlem42 46154 |
| Copyright terms: Public domain | W3C validator |