MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnetrrid Structured version   Visualization version   GIF version

Theorem eqnetrrid 3022
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
eqnetrrid.1 𝐵 = 𝐴
eqnetrrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrrid (𝜑𝐴𝐶)

Proof of Theorem eqnetrrid
StepHypRef Expression
1 eqnetrrid.1 . . 3 𝐵 = 𝐴
21a1i 11 . 2 (𝜑𝐵 = 𝐴)
3 eqnetrrid.2 . 2 (𝜑𝐵𝐶)
42, 3eqnetrrd 3015 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947
This theorem is referenced by:  xpcoidgend  15024  fclsfnflim  24056  ptcmplem2  24082  vieta1lem1  26370  vieta1lem2  26371  fsuppcurry1  32739  fsuppcurry2  32740  signsvfpn  34562  signsvfnn  34563  finxpreclem2  37356  finxp1o  37358  cdleme3h  40192  cdleme7ga  40205  imo72b2lem1  44131  fourierdlem42  46070
  Copyright terms: Public domain W3C validator