![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnetrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
eqnetrrid.1 | ⊢ 𝐵 = 𝐴 |
eqnetrrid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
eqnetrrid | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqnetrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 2, 3 | eqnetrrd 3015 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: xpcoidgend 15024 fclsfnflim 24056 ptcmplem2 24082 vieta1lem1 26370 vieta1lem2 26371 fsuppcurry1 32739 fsuppcurry2 32740 signsvfpn 34562 signsvfnn 34563 finxpreclem2 37356 finxp1o 37358 cdleme3h 40192 cdleme7ga 40205 imo72b2lem1 44131 fourierdlem42 46070 |
Copyright terms: Public domain | W3C validator |