| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnetrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqnetrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqnetrrid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrrid | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqnetrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 4 | 2, 3 | eqnetrrd 3001 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 |
| This theorem is referenced by: xpcoidgend 14999 fclsfnflim 23970 ptcmplem2 23996 vieta1lem1 26275 vieta1lem2 26276 fsuppcurry1 32707 fsuppcurry2 32708 constrresqrtcl 33816 signsvfpn 34622 signsvfnn 34623 finxpreclem2 37413 finxp1o 37415 cdleme3h 40259 cdleme7ga 40272 imo72b2lem0 44156 imo72b2lem1 44160 fourierdlem42 46145 |
| Copyright terms: Public domain | W3C validator |