Proof of Theorem vieta1lem1
Step | Hyp | Ref
| Expression |
1 | | vieta1lem.9 |
. . 3
⊢ 𝑄 = (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))) |
2 | | plyssc 25361 |
. . . . 5
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
3 | | vieta1.4 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ∈ (Poly‘𝑆)) |
5 | 2, 4 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ∈
(Poly‘ℂ)) |
6 | | vieta1.3 |
. . . . . . . . 9
⊢ 𝑅 = (◡𝐹 “ {0}) |
7 | | cnvimass 5989 |
. . . . . . . . 9
⊢ (◡𝐹 “ {0}) ⊆ dom 𝐹 |
8 | 6, 7 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑅 ⊆ dom 𝐹 |
9 | | plyf 25359 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
10 | 3, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
11 | 8, 10 | fssdm 6620 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ⊆ ℂ) |
12 | 11 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ ℂ) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(Xp ∘f − (ℂ ×
{𝑧})) =
(Xp ∘f − (ℂ × {𝑧})) |
14 | 13 | plyremlem 25464 |
. . . . . 6
⊢ (𝑧 ∈ ℂ →
((Xp ∘f − (ℂ × {𝑧})) ∈ (Poly‘ℂ)
∧ (deg‘(Xp ∘f − (ℂ
× {𝑧}))) = 1 ∧
(◡(Xp
∘f − (ℂ × {𝑧})) “ {0}) = {𝑧})) |
15 | 12, 14 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘f − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))) = 1 ∧ (◡(Xp ∘f
− (ℂ × {𝑧})) “ {0}) = {𝑧})) |
16 | 15 | simp1d 1141 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘f − (ℂ × {𝑧})) ∈
(Poly‘ℂ)) |
17 | 15 | simp2d 1142 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘(Xp
∘f − (ℂ × {𝑧}))) = 1) |
18 | | ax-1ne0 10940 |
. . . . . . 7
⊢ 1 ≠
0 |
19 | 18 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 1 ≠ 0) |
20 | 17, 19 | eqnetrd 3011 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘(Xp
∘f − (ℂ × {𝑧}))) ≠ 0) |
21 | | fveq2 6774 |
. . . . . . 7
⊢
((Xp ∘f − (ℂ ×
{𝑧})) =
0𝑝 → (deg‘(Xp
∘f − (ℂ × {𝑧}))) =
(deg‘0𝑝)) |
22 | | dgr0 25423 |
. . . . . . 7
⊢
(deg‘0𝑝) = 0 |
23 | 21, 22 | eqtrdi 2794 |
. . . . . 6
⊢
((Xp ∘f − (ℂ ×
{𝑧})) =
0𝑝 → (deg‘(Xp
∘f − (ℂ × {𝑧}))) = 0) |
24 | 23 | necon3i 2976 |
. . . . 5
⊢
((deg‘(Xp ∘f − (ℂ
× {𝑧}))) ≠ 0
→ (Xp ∘f − (ℂ ×
{𝑧})) ≠
0𝑝) |
25 | 20, 24 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (Xp
∘f − (ℂ × {𝑧})) ≠
0𝑝) |
26 | | quotcl2 25462 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (Xp ∘f − (ℂ × {𝑧})) ∈ (Poly‘ℂ)
∧ (Xp ∘f − (ℂ × {𝑧})) ≠ 0𝑝)
→ (𝐹 quot
(Xp ∘f − (ℂ × {𝑧}))) ∈
(Poly‘ℂ)) |
27 | 5, 16, 25, 26 | syl3anc 1370 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))) ∈
(Poly‘ℂ)) |
28 | 1, 27 | eqeltrid 2843 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄 ∈
(Poly‘ℂ)) |
29 | | 1cnd 10970 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 1 ∈ ℂ) |
30 | | vieta1lem.6 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ℕ) |
31 | 30 | nncnd 11989 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ ℂ) |
32 | 31 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 ∈ ℂ) |
33 | | dgrcl 25394 |
. . . . 5
⊢ (𝑄 ∈ (Poly‘ℂ)
→ (deg‘𝑄) ∈
ℕ0) |
34 | 28, 33 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝑄) ∈
ℕ0) |
35 | 34 | nn0cnd 12295 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝑄) ∈ ℂ) |
36 | | ax-1cn 10929 |
. . . . 5
⊢ 1 ∈
ℂ |
37 | | addcom 11161 |
. . . . 5
⊢ ((1
∈ ℂ ∧ 𝐷
∈ ℂ) → (1 + 𝐷) = (𝐷 + 1)) |
38 | 36, 32, 37 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 + 𝐷) = (𝐷 + 1)) |
39 | | vieta1lem.7 |
. . . . . . 7
⊢ (𝜑 → (𝐷 + 1) = 𝑁) |
40 | | vieta1.2 |
. . . . . . 7
⊢ 𝑁 = (deg‘𝐹) |
41 | 39, 40 | eqtrdi 2794 |
. . . . . 6
⊢ (𝜑 → (𝐷 + 1) = (deg‘𝐹)) |
42 | 41 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 + 1) = (deg‘𝐹)) |
43 | 6 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑅 ↔ 𝑧 ∈ (◡𝐹 “ {0})) |
44 | 10 | ffnd 6601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn ℂ) |
45 | | fniniseg 6937 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ℂ → (𝑧 ∈ (◡𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
46 | 44, 45 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ (◡𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
47 | 43, 46 | bitrid 282 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0))) |
48 | 47 | simplbda 500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐹‘𝑧) = 0) |
49 | 13 | facth 25466 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹‘𝑧) = 0) → 𝐹 = ((Xp
∘f − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))))) |
50 | 4, 12, 48, 49 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 = ((Xp
∘f − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xp
∘f − (ℂ × {𝑧}))))) |
51 | 1 | oveq2i 7286 |
. . . . . . 7
⊢
((Xp ∘f − (ℂ ×
{𝑧})) ∘f
· 𝑄) =
((Xp ∘f − (ℂ × {𝑧})) ∘f ·
(𝐹 quot
(Xp ∘f − (ℂ × {𝑧})))) |
52 | 50, 51 | eqtr4di 2796 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 = ((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄)) |
53 | 52 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘𝐹) = (deg‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄))) |
54 | 30 | peano2nnd 11990 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷 + 1) ∈ ℕ) |
55 | 39, 54 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) |
56 | 55 | nnne0d 12023 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ≠ 0) |
57 | 40, 56 | eqnetrrid 3019 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐹) ≠ 0) |
58 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
59 | 58, 22 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
0) |
60 | 59 | necon3i 2976 |
. . . . . . . . . . . 12
⊢
((deg‘𝐹) ≠
0 → 𝐹 ≠
0𝑝) |
61 | 57, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ≠
0𝑝) |
62 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐹 ≠
0𝑝) |
63 | 52, 62 | eqnetrrd 3012 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) ≠
0𝑝) |
64 | | plymul0or 25441 |
. . . . . . . . . . 11
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) →
(((Xp ∘f − (ℂ × {𝑧})) ∘f ·
𝑄) = 0𝑝
↔ ((Xp ∘f − (ℂ ×
{𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝))) |
65 | 16, 28, 64 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔
((Xp ∘f − (ℂ × {𝑧})) = 0𝑝 ∨
𝑄 =
0𝑝))) |
66 | 65 | necon3abid 2980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝
↔ ¬ ((Xp ∘f − (ℂ
× {𝑧})) =
0𝑝 ∨ 𝑄 = 0𝑝))) |
67 | 63, 66 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ¬ ((Xp
∘f − (ℂ × {𝑧})) = 0𝑝 ∨ 𝑄 =
0𝑝)) |
68 | | neanior 3037 |
. . . . . . . 8
⊢
(((Xp ∘f − (ℂ ×
{𝑧})) ≠
0𝑝 ∧ 𝑄 ≠ 0𝑝) ↔ ¬
((Xp ∘f − (ℂ × {𝑧})) = 0𝑝 ∨
𝑄 =
0𝑝)) |
69 | 67, 68 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((Xp
∘f − (ℂ × {𝑧})) ≠ 0𝑝 ∧ 𝑄 ≠
0𝑝)) |
70 | 69 | simprd 496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝑄 ≠
0𝑝) |
71 | | eqid 2738 |
. . . . . . 7
⊢
(deg‘(Xp ∘f − (ℂ
× {𝑧}))) =
(deg‘(Xp ∘f − (ℂ ×
{𝑧}))) |
72 | | eqid 2738 |
. . . . . . 7
⊢
(deg‘𝑄) =
(deg‘𝑄) |
73 | 71, 72 | dgrmul 25431 |
. . . . . 6
⊢
((((Xp ∘f − (ℂ ×
{𝑧})) ∈
(Poly‘ℂ) ∧ (Xp ∘f −
(ℂ × {𝑧})) ≠
0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝))
→ (deg‘((Xp ∘f − (ℂ
× {𝑧}))
∘f · 𝑄)) = ((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) |
74 | 16, 25, 28, 70, 73 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (deg‘((Xp
∘f − (ℂ × {𝑧})) ∘f · 𝑄)) =
((deg‘(Xp ∘f − (ℂ ×
{𝑧}))) + (deg‘𝑄))) |
75 | 42, 53, 74 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝐷 + 1) = ((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄))) |
76 | 17 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → ((deg‘(Xp
∘f − (ℂ × {𝑧}))) + (deg‘𝑄)) = (1 + (deg‘𝑄))) |
77 | 38, 75, 76 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (1 + 𝐷) = (1 + (deg‘𝑄))) |
78 | 29, 32, 35, 77 | addcanad 11180 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → 𝐷 = (deg‘𝑄)) |
79 | 28, 78 | jca 512 |
1
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) |