MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem1 Structured version   Visualization version   GIF version

Theorem vieta1lem1 25175
Description: Lemma for vieta1 25177. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem1
StepHypRef Expression
1 vieta1lem.9 . . 3 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
2 plyssc 25066 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3 vieta1.4 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
43adantr 484 . . . . 5 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
52, 4sseldi 3889 . . . 4 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘ℂ))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
7 cnvimass 5938 . . . . . . . . 9 (𝐹 “ {0}) ⊆ dom 𝐹
86, 7eqsstri 3925 . . . . . . . 8 𝑅 ⊆ dom 𝐹
9 plyf 25064 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
118, 10fssdm 6554 . . . . . . 7 (𝜑𝑅 ⊆ ℂ)
1211sselda 3891 . . . . . 6 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
13 eqid 2734 . . . . . . 7 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
1413plyremlem 25169 . . . . . 6 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1512, 14syl 17 . . . . 5 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1615simp1d 1144 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
1715simp2d 1145 . . . . . 6 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
18 ax-1ne0 10781 . . . . . . 7 1 ≠ 0
1918a1i 11 . . . . . 6 ((𝜑𝑧𝑅) → 1 ≠ 0)
2017, 19eqnetrd 3002 . . . . 5 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
21 fveq2 6706 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
22 dgr0 25128 . . . . . . 7 (deg‘0𝑝) = 0
2321, 22eqtrdi 2790 . . . . . 6 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
2423necon3i 2967 . . . . 5 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
2520, 24syl 17 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
26 quotcl2 25167 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
275, 16, 25, 26syl3anc 1373 . . 3 ((𝜑𝑧𝑅) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
281, 27eqeltrid 2838 . 2 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
29 1cnd 10811 . . 3 ((𝜑𝑧𝑅) → 1 ∈ ℂ)
30 vieta1lem.6 . . . . 5 (𝜑𝐷 ∈ ℕ)
3130nncnd 11829 . . . 4 (𝜑𝐷 ∈ ℂ)
3231adantr 484 . . 3 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
33 dgrcl 25099 . . . . 5 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3428, 33syl 17 . . . 4 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0cnd 12135 . . 3 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℂ)
36 ax-1cn 10770 . . . . 5 1 ∈ ℂ
37 addcom 11001 . . . . 5 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
3836, 32, 37sylancr 590 . . . 4 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
39 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
40 vieta1.2 . . . . . . 7 𝑁 = (deg‘𝐹)
4139, 40eqtrdi 2790 . . . . . 6 (𝜑 → (𝐷 + 1) = (deg‘𝐹))
4241adantr 484 . . . . 5 ((𝜑𝑧𝑅) → (𝐷 + 1) = (deg‘𝐹))
436eleq2i 2825 . . . . . . . . . 10 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
4410ffnd 6535 . . . . . . . . . . 11 (𝜑𝐹 Fn ℂ)
45 fniniseg 6869 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4644, 45syl 17 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4743, 46syl5bb 286 . . . . . . . . 9 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4847simplbda 503 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
4913facth 25171 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
504, 12, 48, 49syl3anc 1373 . . . . . . 7 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
511oveq2i 7213 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
5250, 51eqtr4di 2792 . . . . . 6 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
5352fveq2d 6710 . . . . 5 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
5430peano2nnd 11830 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 + 1) ∈ ℕ)
5539, 54eqeltrrd 2835 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
5655nnne0d 11863 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
5740, 56eqnetrrid 3010 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ 0)
58 fveq2 6706 . . . . . . . . . . . . . 14 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
5958, 22eqtrdi 2790 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
6059necon3i 2967 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
6157, 60syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
6261adantr 484 . . . . . . . . . 10 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
6352, 62eqnetrrd 3003 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
64 plymul0or 25146 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6516, 28, 64syl2anc 587 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6665necon3abid 2971 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6763, 66mpbid 235 . . . . . . . 8 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
68 neanior 3027 . . . . . . . 8 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
6967, 68sylibr 237 . . . . . . 7 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
7069simprd 499 . . . . . 6 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
71 eqid 2734 . . . . . . 7 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
72 eqid 2734 . . . . . . 7 (deg‘𝑄) = (deg‘𝑄)
7371, 72dgrmul 25136 . . . . . 6 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7416, 25, 28, 70, 73syl22anc 839 . . . . 5 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7542, 53, 743eqtrd 2778 . . . 4 ((𝜑𝑧𝑅) → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7617oveq1d 7217 . . . 4 ((𝜑𝑧𝑅) → ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)) = (1 + (deg‘𝑄)))
7738, 75, 763eqtrd 2778 . . 3 ((𝜑𝑧𝑅) → (1 + 𝐷) = (1 + (deg‘𝑄)))
7829, 32, 35, 77addcanad 11020 . 2 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
7928, 78jca 515 1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  {csn 4531   × cxp 5538  ccnv 5539  dom cdm 5540  cima 5543   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  f cof 7456  cc 10710  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  cmin 11045  -cneg 11046   / cdiv 11472  cn 11813  0cn0 12073  chash 13879  Σcsu 15232  0𝑝c0p 24538  Polycply 25050  Xpcidp 25051  coeffccoe 25052  degcdgr 25053   quot cquot 25155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-rlim 15033  df-sum 15233  df-0p 24539  df-ply 25054  df-idp 25055  df-coe 25056  df-dgr 25057  df-quot 25156
This theorem is referenced by:  vieta1lem2  25176
  Copyright terms: Public domain W3C validator