MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem1 Structured version   Visualization version   GIF version

Theorem vieta1lem1 26370
Description: Lemma for vieta1 26372. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem1
StepHypRef Expression
1 vieta1lem.9 . . 3 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
2 plyssc 26259 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3 vieta1.4 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
43adantr 480 . . . . 5 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
52, 4sselid 4006 . . . 4 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘ℂ))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
7 cnvimass 6111 . . . . . . . . 9 (𝐹 “ {0}) ⊆ dom 𝐹
86, 7eqsstri 4043 . . . . . . . 8 𝑅 ⊆ dom 𝐹
9 plyf 26257 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
118, 10fssdm 6766 . . . . . . 7 (𝜑𝑅 ⊆ ℂ)
1211sselda 4008 . . . . . 6 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
13 eqid 2740 . . . . . . 7 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
1413plyremlem 26364 . . . . . 6 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1512, 14syl 17 . . . . 5 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1615simp1d 1142 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
1715simp2d 1143 . . . . . 6 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
18 ax-1ne0 11253 . . . . . . 7 1 ≠ 0
1918a1i 11 . . . . . 6 ((𝜑𝑧𝑅) → 1 ≠ 0)
2017, 19eqnetrd 3014 . . . . 5 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
21 fveq2 6920 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
22 dgr0 26322 . . . . . . 7 (deg‘0𝑝) = 0
2321, 22eqtrdi 2796 . . . . . 6 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
2423necon3i 2979 . . . . 5 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
2520, 24syl 17 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
26 quotcl2 26362 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
275, 16, 25, 26syl3anc 1371 . . 3 ((𝜑𝑧𝑅) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
281, 27eqeltrid 2848 . 2 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
29 1cnd 11285 . . 3 ((𝜑𝑧𝑅) → 1 ∈ ℂ)
30 vieta1lem.6 . . . . 5 (𝜑𝐷 ∈ ℕ)
3130nncnd 12309 . . . 4 (𝜑𝐷 ∈ ℂ)
3231adantr 480 . . 3 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
33 dgrcl 26292 . . . . 5 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3428, 33syl 17 . . . 4 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0cnd 12615 . . 3 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℂ)
36 ax-1cn 11242 . . . . 5 1 ∈ ℂ
37 addcom 11476 . . . . 5 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
3836, 32, 37sylancr 586 . . . 4 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
39 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
40 vieta1.2 . . . . . . 7 𝑁 = (deg‘𝐹)
4139, 40eqtrdi 2796 . . . . . 6 (𝜑 → (𝐷 + 1) = (deg‘𝐹))
4241adantr 480 . . . . 5 ((𝜑𝑧𝑅) → (𝐷 + 1) = (deg‘𝐹))
436eleq2i 2836 . . . . . . . . . 10 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
4410ffnd 6748 . . . . . . . . . . 11 (𝜑𝐹 Fn ℂ)
45 fniniseg 7093 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4644, 45syl 17 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4743, 46bitrid 283 . . . . . . . . 9 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4847simplbda 499 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
4913facth 26366 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
504, 12, 48, 49syl3anc 1371 . . . . . . 7 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
511oveq2i 7459 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
5250, 51eqtr4di 2798 . . . . . 6 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
5352fveq2d 6924 . . . . 5 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
5430peano2nnd 12310 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 + 1) ∈ ℕ)
5539, 54eqeltrrd 2845 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
5655nnne0d 12343 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
5740, 56eqnetrrid 3022 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ 0)
58 fveq2 6920 . . . . . . . . . . . . . 14 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
5958, 22eqtrdi 2796 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
6059necon3i 2979 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
6157, 60syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
6352, 62eqnetrrd 3015 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
64 plymul0or 26340 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6516, 28, 64syl2anc 583 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6665necon3abid 2983 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6763, 66mpbid 232 . . . . . . . 8 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
68 neanior 3041 . . . . . . . 8 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
6967, 68sylibr 234 . . . . . . 7 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
7069simprd 495 . . . . . 6 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
71 eqid 2740 . . . . . . 7 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
72 eqid 2740 . . . . . . 7 (deg‘𝑄) = (deg‘𝑄)
7371, 72dgrmul 26330 . . . . . 6 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7416, 25, 28, 70, 73syl22anc 838 . . . . 5 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7542, 53, 743eqtrd 2784 . . . 4 ((𝜑𝑧𝑅) → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7617oveq1d 7463 . . . 4 ((𝜑𝑧𝑅) → ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)) = (1 + (deg‘𝑄)))
7738, 75, 763eqtrd 2784 . . 3 ((𝜑𝑧𝑅) → (1 + 𝐷) = (1 + (deg‘𝑄)))
7829, 32, 35, 77addcanad 11495 . 2 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
7928, 78jca 511 1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {csn 4648   × cxp 5698  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  chash 14379  Σcsu 15734  0𝑝c0p 25723  Polycply 26243  Xpcidp 26244  coeffccoe 26245  degcdgr 26246   quot cquot 26350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-quot 26351
This theorem is referenced by:  vieta1lem2  26371
  Copyright terms: Public domain W3C validator