MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem1 Structured version   Visualization version   GIF version

Theorem vieta1lem1 25470
Description: Lemma for vieta1 25472. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem1
StepHypRef Expression
1 vieta1lem.9 . . 3 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
2 plyssc 25361 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3 vieta1.4 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
43adantr 481 . . . . 5 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
52, 4sselid 3919 . . . 4 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘ℂ))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
7 cnvimass 5989 . . . . . . . . 9 (𝐹 “ {0}) ⊆ dom 𝐹
86, 7eqsstri 3955 . . . . . . . 8 𝑅 ⊆ dom 𝐹
9 plyf 25359 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
118, 10fssdm 6620 . . . . . . 7 (𝜑𝑅 ⊆ ℂ)
1211sselda 3921 . . . . . 6 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
13 eqid 2738 . . . . . . 7 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
1413plyremlem 25464 . . . . . 6 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1512, 14syl 17 . . . . 5 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1615simp1d 1141 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
1715simp2d 1142 . . . . . 6 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
18 ax-1ne0 10940 . . . . . . 7 1 ≠ 0
1918a1i 11 . . . . . 6 ((𝜑𝑧𝑅) → 1 ≠ 0)
2017, 19eqnetrd 3011 . . . . 5 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
21 fveq2 6774 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
22 dgr0 25423 . . . . . . 7 (deg‘0𝑝) = 0
2321, 22eqtrdi 2794 . . . . . 6 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
2423necon3i 2976 . . . . 5 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
2520, 24syl 17 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
26 quotcl2 25462 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
275, 16, 25, 26syl3anc 1370 . . 3 ((𝜑𝑧𝑅) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
281, 27eqeltrid 2843 . 2 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
29 1cnd 10970 . . 3 ((𝜑𝑧𝑅) → 1 ∈ ℂ)
30 vieta1lem.6 . . . . 5 (𝜑𝐷 ∈ ℕ)
3130nncnd 11989 . . . 4 (𝜑𝐷 ∈ ℂ)
3231adantr 481 . . 3 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
33 dgrcl 25394 . . . . 5 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3428, 33syl 17 . . . 4 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0cnd 12295 . . 3 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℂ)
36 ax-1cn 10929 . . . . 5 1 ∈ ℂ
37 addcom 11161 . . . . 5 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
3836, 32, 37sylancr 587 . . . 4 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
39 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
40 vieta1.2 . . . . . . 7 𝑁 = (deg‘𝐹)
4139, 40eqtrdi 2794 . . . . . 6 (𝜑 → (𝐷 + 1) = (deg‘𝐹))
4241adantr 481 . . . . 5 ((𝜑𝑧𝑅) → (𝐷 + 1) = (deg‘𝐹))
436eleq2i 2830 . . . . . . . . . 10 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
4410ffnd 6601 . . . . . . . . . . 11 (𝜑𝐹 Fn ℂ)
45 fniniseg 6937 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4644, 45syl 17 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4743, 46bitrid 282 . . . . . . . . 9 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4847simplbda 500 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
4913facth 25466 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
504, 12, 48, 49syl3anc 1370 . . . . . . 7 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
511oveq2i 7286 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
5250, 51eqtr4di 2796 . . . . . 6 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
5352fveq2d 6778 . . . . 5 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
5430peano2nnd 11990 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 + 1) ∈ ℕ)
5539, 54eqeltrrd 2840 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
5655nnne0d 12023 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
5740, 56eqnetrrid 3019 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ 0)
58 fveq2 6774 . . . . . . . . . . . . . 14 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
5958, 22eqtrdi 2794 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
6059necon3i 2976 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
6157, 60syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
6261adantr 481 . . . . . . . . . 10 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
6352, 62eqnetrrd 3012 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
64 plymul0or 25441 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6516, 28, 64syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6665necon3abid 2980 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6763, 66mpbid 231 . . . . . . . 8 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
68 neanior 3037 . . . . . . . 8 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
6967, 68sylibr 233 . . . . . . 7 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
7069simprd 496 . . . . . 6 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
71 eqid 2738 . . . . . . 7 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
72 eqid 2738 . . . . . . 7 (deg‘𝑄) = (deg‘𝑄)
7371, 72dgrmul 25431 . . . . . 6 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7416, 25, 28, 70, 73syl22anc 836 . . . . 5 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7542, 53, 743eqtrd 2782 . . . 4 ((𝜑𝑧𝑅) → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7617oveq1d 7290 . . . 4 ((𝜑𝑧𝑅) → ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)) = (1 + (deg‘𝑄)))
7738, 75, 763eqtrd 2782 . . 3 ((𝜑𝑧𝑅) → (1 + 𝐷) = (1 + (deg‘𝑄)))
7829, 32, 35, 77addcanad 11180 . 2 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
7928, 78jca 512 1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {csn 4561   × cxp 5587  ccnv 5588  dom cdm 5589  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  chash 14044  Σcsu 15397  0𝑝c0p 24833  Polycply 25345  Xpcidp 25346  coeffccoe 25347  degcdgr 25348   quot cquot 25450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-idp 25350  df-coe 25351  df-dgr 25352  df-quot 25451
This theorem is referenced by:  vieta1lem2  25471
  Copyright terms: Public domain W3C validator