MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem1 Structured version   Visualization version   GIF version

Theorem vieta1lem1 26225
Description: Lemma for vieta1 26227. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem1
StepHypRef Expression
1 vieta1lem.9 . . 3 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
2 plyssc 26112 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3 vieta1.4 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
43adantr 480 . . . . 5 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
52, 4sselid 3947 . . . 4 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘ℂ))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
7 cnvimass 6056 . . . . . . . . 9 (𝐹 “ {0}) ⊆ dom 𝐹
86, 7eqsstri 3996 . . . . . . . 8 𝑅 ⊆ dom 𝐹
9 plyf 26110 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
118, 10fssdm 6710 . . . . . . 7 (𝜑𝑅 ⊆ ℂ)
1211sselda 3949 . . . . . 6 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
13 eqid 2730 . . . . . . 7 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
1413plyremlem 26219 . . . . . 6 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1512, 14syl 17 . . . . 5 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1615simp1d 1142 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
1715simp2d 1143 . . . . . 6 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
18 ax-1ne0 11144 . . . . . . 7 1 ≠ 0
1918a1i 11 . . . . . 6 ((𝜑𝑧𝑅) → 1 ≠ 0)
2017, 19eqnetrd 2993 . . . . 5 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
21 fveq2 6861 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
22 dgr0 26175 . . . . . . 7 (deg‘0𝑝) = 0
2321, 22eqtrdi 2781 . . . . . 6 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
2423necon3i 2958 . . . . 5 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
2520, 24syl 17 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
26 quotcl2 26217 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
275, 16, 25, 26syl3anc 1373 . . 3 ((𝜑𝑧𝑅) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
281, 27eqeltrid 2833 . 2 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
29 1cnd 11176 . . 3 ((𝜑𝑧𝑅) → 1 ∈ ℂ)
30 vieta1lem.6 . . . . 5 (𝜑𝐷 ∈ ℕ)
3130nncnd 12209 . . . 4 (𝜑𝐷 ∈ ℂ)
3231adantr 480 . . 3 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
33 dgrcl 26145 . . . . 5 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3428, 33syl 17 . . . 4 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0cnd 12512 . . 3 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℂ)
36 ax-1cn 11133 . . . . 5 1 ∈ ℂ
37 addcom 11367 . . . . 5 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
3836, 32, 37sylancr 587 . . . 4 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
39 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
40 vieta1.2 . . . . . . 7 𝑁 = (deg‘𝐹)
4139, 40eqtrdi 2781 . . . . . 6 (𝜑 → (𝐷 + 1) = (deg‘𝐹))
4241adantr 480 . . . . 5 ((𝜑𝑧𝑅) → (𝐷 + 1) = (deg‘𝐹))
436eleq2i 2821 . . . . . . . . . 10 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
4410ffnd 6692 . . . . . . . . . . 11 (𝜑𝐹 Fn ℂ)
45 fniniseg 7035 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4644, 45syl 17 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4743, 46bitrid 283 . . . . . . . . 9 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4847simplbda 499 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
4913facth 26221 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
504, 12, 48, 49syl3anc 1373 . . . . . . 7 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
511oveq2i 7401 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
5250, 51eqtr4di 2783 . . . . . 6 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
5352fveq2d 6865 . . . . 5 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
5430peano2nnd 12210 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 + 1) ∈ ℕ)
5539, 54eqeltrrd 2830 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
5655nnne0d 12243 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
5740, 56eqnetrrid 3001 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ 0)
58 fveq2 6861 . . . . . . . . . . . . . 14 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
5958, 22eqtrdi 2781 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
6059necon3i 2958 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
6157, 60syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
6352, 62eqnetrrd 2994 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
64 plymul0or 26195 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6516, 28, 64syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6665necon3abid 2962 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6763, 66mpbid 232 . . . . . . . 8 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
68 neanior 3019 . . . . . . . 8 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
6967, 68sylibr 234 . . . . . . 7 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
7069simprd 495 . . . . . 6 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
71 eqid 2730 . . . . . . 7 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
72 eqid 2730 . . . . . . 7 (deg‘𝑄) = (deg‘𝑄)
7371, 72dgrmul 26183 . . . . . 6 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7416, 25, 28, 70, 73syl22anc 838 . . . . 5 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7542, 53, 743eqtrd 2769 . . . 4 ((𝜑𝑧𝑅) → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7617oveq1d 7405 . . . 4 ((𝜑𝑧𝑅) → ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)) = (1 + (deg‘𝑄)))
7738, 75, 763eqtrd 2769 . . 3 ((𝜑𝑧𝑅) → (1 + 𝐷) = (1 + (deg‘𝑄)))
7829, 32, 35, 77addcanad 11386 . 2 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
7928, 78jca 511 1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {csn 4592   × cxp 5639  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  chash 14302  Σcsu 15659  0𝑝c0p 25577  Polycply 26096  Xpcidp 26097  coeffccoe 26098  degcdgr 26099   quot cquot 26205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206
This theorem is referenced by:  vieta1lem2  26226
  Copyright terms: Public domain W3C validator