MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem1 Structured version   Visualization version   GIF version

Theorem vieta1lem1 26251
Description: Lemma for vieta1 26253. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1 𝐴 = (coeff‘𝐹)
vieta1.2 𝑁 = (deg‘𝐹)
vieta1.3 𝑅 = (𝐹 “ {0})
vieta1.4 (𝜑𝐹 ∈ (Poly‘𝑆))
vieta1.5 (𝜑 → (♯‘𝑅) = 𝑁)
vieta1lem.6 (𝜑𝐷 ∈ ℕ)
vieta1lem.7 (𝜑 → (𝐷 + 1) = 𝑁)
vieta1lem.8 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓)))))
vieta1lem.9 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
Assertion
Ref Expression
vieta1lem1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑧,𝑓,𝑁   𝑥,𝑓,𝑄   𝑅,𝑓   𝑥,𝑧,𝑅   𝐴,𝑓,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑥)   𝐷(𝑥,𝑧)   𝑄(𝑧)   𝑆(𝑥,𝑧,𝑓)   𝐹(𝑥,𝑧)   𝑁(𝑥)

Proof of Theorem vieta1lem1
StepHypRef Expression
1 vieta1lem.9 . . 3 𝑄 = (𝐹 quot (Xpf − (ℂ × {𝑧})))
2 plyssc 26138 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
3 vieta1.4 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
43adantr 480 . . . . 5 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘𝑆))
52, 4sselid 3941 . . . 4 ((𝜑𝑧𝑅) → 𝐹 ∈ (Poly‘ℂ))
6 vieta1.3 . . . . . . . . 9 𝑅 = (𝐹 “ {0})
7 cnvimass 6042 . . . . . . . . 9 (𝐹 “ {0}) ⊆ dom 𝐹
86, 7eqsstri 3990 . . . . . . . 8 𝑅 ⊆ dom 𝐹
9 plyf 26136 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
118, 10fssdm 6689 . . . . . . 7 (𝜑𝑅 ⊆ ℂ)
1211sselda 3943 . . . . . 6 ((𝜑𝑧𝑅) → 𝑧 ∈ ℂ)
13 eqid 2729 . . . . . . 7 (Xpf − (ℂ × {𝑧})) = (Xpf − (ℂ × {𝑧}))
1413plyremlem 26245 . . . . . 6 (𝑧 ∈ ℂ → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1512, 14syl 17 . . . . 5 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝑧}))) = 1 ∧ ((Xpf − (ℂ × {𝑧})) “ {0}) = {𝑧}))
1615simp1d 1142 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ))
1715simp2d 1143 . . . . . 6 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) = 1)
18 ax-1ne0 11113 . . . . . . 7 1 ≠ 0
1918a1i 11 . . . . . 6 ((𝜑𝑧𝑅) → 1 ≠ 0)
2017, 19eqnetrd 2992 . . . . 5 ((𝜑𝑧𝑅) → (deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0)
21 fveq2 6840 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘0𝑝))
22 dgr0 26201 . . . . . . 7 (deg‘0𝑝) = 0
2321, 22eqtrdi 2780 . . . . . 6 ((Xpf − (ℂ × {𝑧})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝑧}))) = 0)
2423necon3i 2957 . . . . 5 ((deg‘(Xpf − (ℂ × {𝑧}))) ≠ 0 → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
2520, 24syl 17 . . . 4 ((𝜑𝑧𝑅) → (Xpf − (ℂ × {𝑧})) ≠ 0𝑝)
26 quotcl2 26243 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
275, 16, 25, 26syl3anc 1373 . . 3 ((𝜑𝑧𝑅) → (𝐹 quot (Xpf − (ℂ × {𝑧}))) ∈ (Poly‘ℂ))
281, 27eqeltrid 2832 . 2 ((𝜑𝑧𝑅) → 𝑄 ∈ (Poly‘ℂ))
29 1cnd 11145 . . 3 ((𝜑𝑧𝑅) → 1 ∈ ℂ)
30 vieta1lem.6 . . . . 5 (𝜑𝐷 ∈ ℕ)
3130nncnd 12178 . . . 4 (𝜑𝐷 ∈ ℂ)
3231adantr 480 . . 3 ((𝜑𝑧𝑅) → 𝐷 ∈ ℂ)
33 dgrcl 26171 . . . . 5 (𝑄 ∈ (Poly‘ℂ) → (deg‘𝑄) ∈ ℕ0)
3428, 33syl 17 . . . 4 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℕ0)
3534nn0cnd 12481 . . 3 ((𝜑𝑧𝑅) → (deg‘𝑄) ∈ ℂ)
36 ax-1cn 11102 . . . . 5 1 ∈ ℂ
37 addcom 11336 . . . . 5 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
3836, 32, 37sylancr 587 . . . 4 ((𝜑𝑧𝑅) → (1 + 𝐷) = (𝐷 + 1))
39 vieta1lem.7 . . . . . . 7 (𝜑 → (𝐷 + 1) = 𝑁)
40 vieta1.2 . . . . . . 7 𝑁 = (deg‘𝐹)
4139, 40eqtrdi 2780 . . . . . 6 (𝜑 → (𝐷 + 1) = (deg‘𝐹))
4241adantr 480 . . . . 5 ((𝜑𝑧𝑅) → (𝐷 + 1) = (deg‘𝐹))
436eleq2i 2820 . . . . . . . . . 10 (𝑧𝑅𝑧 ∈ (𝐹 “ {0}))
4410ffnd 6671 . . . . . . . . . . 11 (𝜑𝐹 Fn ℂ)
45 fniniseg 7014 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4644, 45syl 17 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ (𝐹 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4743, 46bitrid 283 . . . . . . . . 9 (𝜑 → (𝑧𝑅 ↔ (𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0)))
4847simplbda 499 . . . . . . . 8 ((𝜑𝑧𝑅) → (𝐹𝑧) = 0)
4913facth 26247 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ ∧ (𝐹𝑧) = 0) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
504, 12, 48, 49syl3anc 1373 . . . . . . 7 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧})))))
511oveq2i 7380 . . . . . . 7 ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = ((Xpf − (ℂ × {𝑧})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝑧}))))
5250, 51eqtr4di 2782 . . . . . 6 ((𝜑𝑧𝑅) → 𝐹 = ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄))
5352fveq2d 6844 . . . . 5 ((𝜑𝑧𝑅) → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)))
5430peano2nnd 12179 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 + 1) ∈ ℕ)
5539, 54eqeltrrd 2829 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
5655nnne0d 12212 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
5740, 56eqnetrrid 3000 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ 0)
58 fveq2 6840 . . . . . . . . . . . . . 14 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
5958, 22eqtrdi 2780 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
6059necon3i 2957 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ 0 → 𝐹 ≠ 0𝑝)
6157, 60syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑅) → 𝐹 ≠ 0𝑝)
6352, 62eqnetrrd 2993 . . . . . . . . 9 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝)
64 plymul0or 26221 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ 𝑄 ∈ (Poly‘ℂ)) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6516, 28, 64syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) = 0𝑝 ↔ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6665necon3abid 2961 . . . . . . . . 9 ((𝜑𝑧𝑅) → (((Xpf − (ℂ × {𝑧})) ∘f · 𝑄) ≠ 0𝑝 ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝)))
6763, 66mpbid 232 . . . . . . . 8 ((𝜑𝑧𝑅) → ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
68 neanior 3018 . . . . . . . 8 (((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝) ↔ ¬ ((Xpf − (ℂ × {𝑧})) = 0𝑝𝑄 = 0𝑝))
6967, 68sylibr 234 . . . . . . 7 ((𝜑𝑧𝑅) → ((Xpf − (ℂ × {𝑧})) ≠ 0𝑝𝑄 ≠ 0𝑝))
7069simprd 495 . . . . . 6 ((𝜑𝑧𝑅) → 𝑄 ≠ 0𝑝)
71 eqid 2729 . . . . . . 7 (deg‘(Xpf − (ℂ × {𝑧}))) = (deg‘(Xpf − (ℂ × {𝑧})))
72 eqid 2729 . . . . . . 7 (deg‘𝑄) = (deg‘𝑄)
7371, 72dgrmul 26209 . . . . . 6 ((((Xpf − (ℂ × {𝑧})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝑧})) ≠ 0𝑝) ∧ (𝑄 ∈ (Poly‘ℂ) ∧ 𝑄 ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7416, 25, 28, 70, 73syl22anc 838 . . . . 5 ((𝜑𝑧𝑅) → (deg‘((Xpf − (ℂ × {𝑧})) ∘f · 𝑄)) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7542, 53, 743eqtrd 2768 . . . 4 ((𝜑𝑧𝑅) → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)))
7617oveq1d 7384 . . . 4 ((𝜑𝑧𝑅) → ((deg‘(Xpf − (ℂ × {𝑧}))) + (deg‘𝑄)) = (1 + (deg‘𝑄)))
7738, 75, 763eqtrd 2768 . . 3 ((𝜑𝑧𝑅) → (1 + 𝐷) = (1 + (deg‘𝑄)))
7829, 32, 35, 77addcanad 11355 . 2 ((𝜑𝑧𝑅) → 𝐷 = (deg‘𝑄))
7928, 78jca 511 1 ((𝜑𝑧𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {csn 4585   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  chash 14271  Σcsu 15628  0𝑝c0p 25603  Polycply 26122  Xpcidp 26123  coeffccoe 26124  degcdgr 26125   quot cquot 26231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25604  df-ply 26126  df-idp 26127  df-coe 26128  df-dgr 26129  df-quot 26232
This theorem is referenced by:  vieta1lem2  26252
  Copyright terms: Public domain W3C validator