| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for imo72b2 44161. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| imo72b2lem1.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| imo72b2lem1.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) |
| imo72b2lem1.6 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) |
| Ref | Expression |
|---|---|
| imo72b2lem1 | ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6224 | . . 3 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 2 | imassrn 6042 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
| 3 | imo72b2lem1.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 4 | absf 15304 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 6 | ax-resscn 11125 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 8 | 5, 7 | fssresd 6727 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 9 | 3, 8 | fco2d 44151 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 10 | 9 | frnd 6696 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
| 11 | 2, 10 | sstrid 3958 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
| 12 | 1, 11 | eqsstrrid 3986 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
| 13 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 14 | 13 | ne0ii 4307 | . . . . 5 ⊢ ℝ ≠ ∅ |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ≠ ∅) |
| 16 | 15, 9 | wnefimgd 44150 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
| 17 | 1, 16 | eqnetrrid 3000 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
| 18 | 1red 11175 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 1) → 𝑐 = 1) | |
| 20 | 19 | breq2d 5119 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 1) → (𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 1)) |
| 21 | 20 | ralbidv 3156 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)) |
| 22 | imo72b2lem1.6 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) | |
| 23 | 3, 22 | extoimad 44153 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1) |
| 24 | 18, 21, 23 | rspcedvd 3590 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝑐) |
| 25 | 0red 11177 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 26 | imo72b2lem1.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) | |
| 27 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 𝐹:ℝ⟶ℝ) |
| 28 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 𝑥 ∈ ℝ) | |
| 29 | 27, 28 | fvco3d 6961 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) |
| 30 | 9 | funfvima2d 7206 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ)) |
| 31 | 30 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ)) |
| 32 | 31, 1 | eleqtrdi 2838 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ (abs “ (𝐹 “ ℝ))) |
| 33 | 29, 32 | eqeltrrd 2829 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (abs‘(𝐹‘𝑥)) ∈ (abs “ (𝐹 “ ℝ))) |
| 34 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹‘𝑥))) → 𝑧 = (abs‘(𝐹‘𝑥))) | |
| 35 | 34 | breq2d 5119 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹‘𝑥))) → (0 < 𝑧 ↔ 0 < (abs‘(𝐹‘𝑥)))) |
| 36 | 3 | ffvelcdmda 7056 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 37 | 36 | adantrr 717 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ∈ ℝ) |
| 38 | 37 | recnd 11202 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ∈ ℂ) |
| 39 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ≠ 0) | |
| 40 | 38, 39 | absrpcld 15417 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (abs‘(𝐹‘𝑥)) ∈ ℝ+) |
| 41 | 40 | rpgt0d 12998 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 0 < (abs‘(𝐹‘𝑥))) |
| 42 | 33, 35, 41 | rspcedvd 3590 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧) |
| 43 | 26, 42 | rexlimddv 3140 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧) |
| 44 | 12, 17, 24, 25, 43 | suprlubrd 44157 | 1 ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ran crn 5639 “ cima 5641 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 supcsup 9391 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 ≤ cle 11209 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: imo72b2 44161 |
| Copyright terms: Public domain | W3C validator |