Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem1 Structured version   Visualization version   GIF version

Theorem imo72b2lem1 43236
Description: Lemma for imo72b2 43239. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem1.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem1.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
imo72b2lem1.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem1 (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑥,𝐹   𝑦,𝐹   𝜑,𝑥   𝜑,𝑦

Proof of Theorem imo72b2lem1
Dummy variables 𝑐 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaco 6250 . . 3 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
2 imassrn 6070 . . . 4 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
3 imo72b2lem1.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
4 absf 15291 . . . . . . . 8 abs:ℂ⟶ℝ
54a1i 11 . . . . . . 7 (𝜑 → abs:ℂ⟶ℝ)
6 ax-resscn 11173 . . . . . . . 8 ℝ ⊆ ℂ
76a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
85, 7fssresd 6758 . . . . . 6 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
93, 8fco2d 43229 . . . . 5 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
109frnd 6725 . . . 4 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
112, 10sstrid 3993 . . 3 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
121, 11eqsstrrid 4031 . 2 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
13 0re 11223 . . . . . 6 0 ∈ ℝ
1413ne0ii 4337 . . . . 5 ℝ ≠ ∅
1514a1i 11 . . . 4 (𝜑 → ℝ ≠ ∅)
1615, 9wnefimgd 43228 . . 3 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
171, 16eqnetrrid 3015 . 2 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
18 1red 11222 . . 3 (𝜑 → 1 ∈ ℝ)
19 simpr 484 . . . . 5 ((𝜑𝑐 = 1) → 𝑐 = 1)
2019breq2d 5160 . . . 4 ((𝜑𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
2120ralbidv 3176 . . 3 ((𝜑𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
22 imo72b2lem1.6 . . . 4 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
233, 22extoimad 43231 . . 3 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
2418, 21, 23rspcedvd 3614 . 2 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
25 0red 11224 . 2 (𝜑 → 0 ∈ ℝ)
26 imo72b2lem1.7 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
273adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → 𝐹:ℝ⟶ℝ)
28 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → 𝑥 ∈ ℝ)
2927, 28fvco3d 6991 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
309funfvima2d 7236 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ))
3130adantrr 714 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ))
3231, 1eleqtrdi 2842 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ (abs “ (𝐹 “ ℝ)))
3329, 32eqeltrrd 2833 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (abs‘(𝐹𝑥)) ∈ (abs “ (𝐹 “ ℝ)))
34 simpr 484 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹𝑥))) → 𝑧 = (abs‘(𝐹𝑥)))
3534breq2d 5160 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹𝑥))) → (0 < 𝑧 ↔ 0 < (abs‘(𝐹𝑥))))
363ffvelcdmda 7086 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3736adantrr 714 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (𝐹𝑥) ∈ ℝ)
3837recnd 11249 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (𝐹𝑥) ∈ ℂ)
39 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (𝐹𝑥) ≠ 0)
4038, 39absrpcld 15402 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (abs‘(𝐹𝑥)) ∈ ℝ+)
4140rpgt0d 13026 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → 0 < (abs‘(𝐹𝑥)))
4233, 35, 41rspcedvd 3614 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧)
4326, 42rexlimddv 3160 . 2 (𝜑 → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧)
4412, 17, 24, 25, 43suprlubrd 43235 1 (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3948  c0 4322   class class class wbr 5148  ran crn 5677  cima 5679  ccom 5680  wf 6539  cfv 6543  supcsup 9441  cc 11114  cr 11115  0cc0 11116  1c1 11117   < clt 11255  cle 11256  abscabs 15188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190
This theorem is referenced by:  imo72b2  43239
  Copyright terms: Public domain W3C validator