![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem1 | Structured version Visualization version GIF version |
Description: Lemma for imo72b2 44134. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
imo72b2lem1.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
imo72b2lem1.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) |
imo72b2lem1.6 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) |
Ref | Expression |
---|---|
imo72b2lem1 | ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6282 | . . 3 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
2 | imassrn 6100 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
3 | imo72b2lem1.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
4 | absf 15386 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
6 | ax-resscn 11241 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
8 | 5, 7 | fssresd 6788 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
9 | 3, 8 | fco2d 44124 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
10 | 9 | frnd 6755 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
11 | 2, 10 | sstrid 4020 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
12 | 1, 11 | eqsstrrid 4058 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
13 | 0re 11292 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 13 | ne0ii 4367 | . . . . 5 ⊢ ℝ ≠ ∅ |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ≠ ∅) |
16 | 15, 9 | wnefimgd 44123 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
17 | 1, 16 | eqnetrrid 3022 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
18 | 1red 11291 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 1) → 𝑐 = 1) | |
20 | 19 | breq2d 5178 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 1) → (𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 1)) |
21 | 20 | ralbidv 3184 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)) |
22 | imo72b2lem1.6 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) | |
23 | 3, 22 | extoimad 44126 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1) |
24 | 18, 21, 23 | rspcedvd 3637 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝑐) |
25 | 0red 11293 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
26 | imo72b2lem1.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) | |
27 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 𝐹:ℝ⟶ℝ) |
28 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 𝑥 ∈ ℝ) | |
29 | 27, 28 | fvco3d 7022 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) |
30 | 9 | funfvima2d 7269 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ)) |
31 | 30 | adantrr 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ)) |
32 | 31, 1 | eleqtrdi 2854 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ (abs “ (𝐹 “ ℝ))) |
33 | 29, 32 | eqeltrrd 2845 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (abs‘(𝐹‘𝑥)) ∈ (abs “ (𝐹 “ ℝ))) |
34 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹‘𝑥))) → 𝑧 = (abs‘(𝐹‘𝑥))) | |
35 | 34 | breq2d 5178 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹‘𝑥))) → (0 < 𝑧 ↔ 0 < (abs‘(𝐹‘𝑥)))) |
36 | 3 | ffvelcdmda 7118 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
37 | 36 | adantrr 716 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ∈ ℝ) |
38 | 37 | recnd 11318 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ∈ ℂ) |
39 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ≠ 0) | |
40 | 38, 39 | absrpcld 15497 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (abs‘(𝐹‘𝑥)) ∈ ℝ+) |
41 | 40 | rpgt0d 13102 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 0 < (abs‘(𝐹‘𝑥))) |
42 | 33, 35, 41 | rspcedvd 3637 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧) |
43 | 26, 42 | rexlimddv 3167 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧) |
44 | 12, 17, 24, 25, 43 | suprlubrd 44130 | 1 ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ran crn 5701 “ cima 5703 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 supcsup 9509 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 < clt 11324 ≤ cle 11325 abscabs 15283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 |
This theorem is referenced by: imo72b2 44134 |
Copyright terms: Public domain | W3C validator |