Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem1 | Structured version Visualization version GIF version |
Description: Lemma for imo72b2 41672. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
imo72b2lem1.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
imo72b2lem1.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) |
imo72b2lem1.6 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) |
Ref | Expression |
---|---|
imo72b2lem1 | ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6144 | . . 3 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
2 | imassrn 5969 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
3 | imo72b2lem1.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
4 | absf 14977 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
6 | ax-resscn 10859 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
8 | 5, 7 | fssresd 6625 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
9 | 3, 8 | fco2d 41662 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
10 | 9 | frnd 6592 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
11 | 2, 10 | sstrid 3928 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
12 | 1, 11 | eqsstrrid 3966 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
13 | 0re 10908 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 13 | ne0ii 4268 | . . . . 5 ⊢ ℝ ≠ ∅ |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ≠ ∅) |
16 | 15, 9 | wnefimgd 41661 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
17 | 1, 16 | eqnetrrid 3018 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
18 | 1red 10907 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 1) → 𝑐 = 1) | |
20 | 19 | breq2d 5082 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 1) → (𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 1)) |
21 | 20 | ralbidv 3120 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)) |
22 | imo72b2lem1.6 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) | |
23 | 3, 22 | extoimad 41664 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1) |
24 | 18, 21, 23 | rspcedvd 3555 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝑐) |
25 | 0red 10909 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
26 | imo72b2lem1.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) | |
27 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 𝐹:ℝ⟶ℝ) |
28 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 𝑥 ∈ ℝ) | |
29 | 27, 28 | fvco3d 6850 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) |
30 | 9 | funfvima2d 7090 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ)) |
31 | 30 | adantrr 713 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ)) |
32 | 31, 1 | eleqtrdi 2849 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ (abs “ (𝐹 “ ℝ))) |
33 | 29, 32 | eqeltrrd 2840 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (abs‘(𝐹‘𝑥)) ∈ (abs “ (𝐹 “ ℝ))) |
34 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹‘𝑥))) → 𝑧 = (abs‘(𝐹‘𝑥))) | |
35 | 34 | breq2d 5082 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹‘𝑥))) → (0 < 𝑧 ↔ 0 < (abs‘(𝐹‘𝑥)))) |
36 | 3 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
37 | 36 | adantrr 713 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ∈ ℝ) |
38 | 37 | recnd 10934 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ∈ ℂ) |
39 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (𝐹‘𝑥) ≠ 0) | |
40 | 38, 39 | absrpcld 15088 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → (abs‘(𝐹‘𝑥)) ∈ ℝ+) |
41 | 40 | rpgt0d 12704 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → 0 < (abs‘(𝐹‘𝑥))) |
42 | 33, 35, 41 | rspcedvd 3555 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ≠ 0)) → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧) |
43 | 26, 42 | rexlimddv 3219 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧) |
44 | 12, 17, 24, 25, 43 | suprlubrd 41668 | 1 ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ran crn 5581 “ cima 5583 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 supcsup 9129 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: imo72b2 41672 |
Copyright terms: Public domain | W3C validator |