Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem1 Structured version   Visualization version   GIF version

Theorem imo72b2lem1 40528
Description: Lemma for imo72b2 40532. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem1.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem1.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
imo72b2lem1.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem1 (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑥,𝐹   𝑦,𝐹   𝜑,𝑥   𝜑,𝑦

Proof of Theorem imo72b2lem1
Dummy variables 𝑐 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaco 6106 . . 3 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
2 imassrn 5942 . . . 4 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
3 imo72b2lem1.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
4 absf 14699 . . . . . . . 8 abs:ℂ⟶ℝ
54a1i 11 . . . . . . 7 (𝜑 → abs:ℂ⟶ℝ)
6 ax-resscn 10596 . . . . . . . 8 ℝ ⊆ ℂ
76a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
85, 7fssresd 6547 . . . . . 6 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
93, 8fco2d 40520 . . . . 5 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
109frnd 6523 . . . 4 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
112, 10sstrid 3980 . . 3 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
121, 11eqsstrrid 4018 . 2 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
13 0re 10645 . . . . . 6 0 ∈ ℝ
1413ne0ii 4305 . . . . 5 ℝ ≠ ∅
1514a1i 11 . . . 4 (𝜑 → ℝ ≠ ∅)
1615, 9wnefimgd 40519 . . 3 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
171, 16eqnetrrid 3093 . 2 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
18 1red 10644 . . 3 (𝜑 → 1 ∈ ℝ)
19 simpr 487 . . . . 5 ((𝜑𝑐 = 1) → 𝑐 = 1)
2019breq2d 5080 . . . 4 ((𝜑𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
2120ralbidv 3199 . . 3 ((𝜑𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
22 imo72b2lem1.6 . . . 4 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
233, 22extoimad 40522 . . 3 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
2418, 21, 23rspcedvd 3628 . 2 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
25 0red 10646 . 2 (𝜑 → 0 ∈ ℝ)
26 imo72b2lem1.7 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
273adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → 𝐹:ℝ⟶ℝ)
28 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → 𝑥 ∈ ℝ)
2927, 28fvco3d 6763 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
309funfvima2d 6996 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ))
3130adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ ((abs ∘ 𝐹) “ ℝ))
3231, 1eleqtrdi 2925 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ((abs ∘ 𝐹)‘𝑥) ∈ (abs “ (𝐹 “ ℝ)))
3329, 32eqeltrrd 2916 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (abs‘(𝐹𝑥)) ∈ (abs “ (𝐹 “ ℝ)))
34 simpr 487 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹𝑥))) → 𝑧 = (abs‘(𝐹𝑥)))
3534breq2d 5080 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) ∧ 𝑧 = (abs‘(𝐹𝑥))) → (0 < 𝑧 ↔ 0 < (abs‘(𝐹𝑥))))
363ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3736adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (𝐹𝑥) ∈ ℝ)
3837recnd 10671 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (𝐹𝑥) ∈ ℂ)
39 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (𝐹𝑥) ≠ 0)
4038, 39absrpcld 14810 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → (abs‘(𝐹𝑥)) ∈ ℝ+)
4140rpgt0d 12437 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → 0 < (abs‘(𝐹𝑥)))
4233, 35, 41rspcedvd 3628 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ≠ 0)) → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧)
4326, 42rexlimddv 3293 . 2 (𝜑 → ∃𝑧 ∈ (abs “ (𝐹 “ ℝ))0 < 𝑧)
4412, 17, 24, 25, 43suprlubrd 40527 1 (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  wss 3938  c0 4293   class class class wbr 5068  ran crn 5558  cima 5560  ccom 5561  wf 6353  cfv 6357  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   < clt 10677  cle 10678  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  imo72b2  40532
  Copyright terms: Public domain W3C validator