Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfpn Structured version   Visualization version   GIF version

Theorem signsvfpn 32303
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfpn ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfpn
StepHypRef Expression
1 signsvf.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
21recnd 10886 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
4 signsvf.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
54eldifad 3893 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Word ℝ)
6 wrdf 14102 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
8 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
98oveq1i 7242 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
10 eldifsn 4715 . . . . . . . . . . . . . 14 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
114, 10sylib 221 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
12 lennncl 14117 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
13 fzo0end 13359 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1411, 12, 133syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
159, 14eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
167, 15ffvelrnd 6924 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1716recnd 10886 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
183, 17eqeltrid 2843 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
192, 18mulcomd 10879 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2019breq2d 5080 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴)))
213, 16eqeltrid 2843 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
22 sgnmulsgp 32256 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
231, 21, 22syl2anc 587 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2420, 23bitr3d 284 . . . . 5 (𝜑 → (0 < (𝐵 · 𝐴) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2524biimpa 480 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘𝐵)))
264adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2718adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℂ)
282adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℂ)
29 simpr 488 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐵 · 𝐴))
3029gt0ne0d 11421 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐵 · 𝐴) ≠ 0)
3127, 28, 30mulne0bad 11512 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ≠ 0)
323, 31eqnetrrid 3017 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐸‘(𝑁 − 1)) ≠ 0)
33 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
34 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
35 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
36 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3733, 34, 35, 36, 8signsvtn0 32288 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
383fveq2i 6739 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3937, 38eqtr4di 2797 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4026, 32, 39syl2anc 587 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4140fveq2d 6740 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
4221adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ)
4342rexrd 10908 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ*)
44 sgnsgn 32254 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4543, 44syl 17 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4641, 45eqtrd 2778 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4746oveq2d 7248 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4825, 47breqtrrd 5096 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))))
491adantr 484 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℝ)
50 sgnclre 32245 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5142, 50syl 17 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘𝐵) ∈ ℝ)
5240, 51eqeltrd 2839 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgp 32256 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5449, 52, 53syl2anc 587 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5548, 54mpbird 260 . 2 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))))
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2738 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5933, 34, 35, 36, 4, 56, 57, 1, 8, 58signsvtp 32301 . 2 ((𝜑 ∧ 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1)))) → (𝑉𝐹) = (𝑉𝐸))
6055, 59syldan 594 1 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  wne 2941  cdif 3878  c0 4252  ifcif 4454  {csn 4556  {cpr 4558  {ctp 4560  cop 4562   class class class wbr 5068  cmpt 5150  wf 6394  cfv 6398  (class class class)co 7232  cmpo 7234  cc 10752  cr 10753  0cc0 10754  1c1 10755   · cmul 10759  *cxr 10891   < clt 10892  cmin 11087  -cneg 11088  cn 11855  ...cfz 13120  ..^cfzo 13263  chash 13924  Word cword 14097   ++ cconcat 14153  ⟨“cs1 14180  sgncsgn 14677  Σcsu 15277  ndxcnx 16772  Basecbs 16788  +gcplusg 16830   Σg cgsu 16973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-sup 9083  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-n0 12116  df-xnn0 12188  df-z 12202  df-uz 12464  df-rp 12612  df-fz 13121  df-fzo 13264  df-seq 13602  df-exp 13663  df-hash 13925  df-word 14098  df-lsw 14146  df-concat 14154  df-s1 14181  df-substr 14234  df-pfx 14264  df-sgn 14678  df-cj 14690  df-re 14691  df-im 14692  df-sqrt 14826  df-abs 14827  df-clim 15077  df-sum 15278  df-struct 16728  df-slot 16763  df-ndx 16773  df-base 16789  df-plusg 16843  df-0g 16974  df-gsum 16975  df-mgm 18142  df-sgrp 18191  df-mnd 18202  df-mulg 18517  df-cntz 18739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator