Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfpn Structured version   Visualization version   GIF version

Theorem signsvfpn 33286
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfpn ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfpn
StepHypRef Expression
1 signsvf.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
21recnd 11192 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
4 signsvf.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
54eldifad 3925 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Word ℝ)
6 wrdf 14419 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
8 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
98oveq1i 7372 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
10 eldifsn 4752 . . . . . . . . . . . . . 14 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
114, 10sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
12 lennncl 14434 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
13 fzo0end 13674 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1411, 12, 133syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
159, 14eqeltrid 2836 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
167, 15ffvelcdmd 7041 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1716recnd 11192 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
183, 17eqeltrid 2836 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
192, 18mulcomd 11185 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2019breq2d 5122 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴)))
213, 16eqeltrid 2836 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
22 sgnmulsgp 33239 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
231, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2420, 23bitr3d 280 . . . . 5 (𝜑 → (0 < (𝐵 · 𝐴) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2524biimpa 477 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘𝐵)))
264adantr 481 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2718adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℂ)
282adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℂ)
29 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐵 · 𝐴))
3029gt0ne0d 11728 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐵 · 𝐴) ≠ 0)
3127, 28, 30mulne0bad 11819 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ≠ 0)
323, 31eqnetrrid 3015 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐸‘(𝑁 − 1)) ≠ 0)
33 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
34 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
35 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
36 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3733, 34, 35, 36, 8signsvtn0 33271 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
383fveq2i 6850 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3937, 38eqtr4di 2789 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4026, 32, 39syl2anc 584 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4140fveq2d 6851 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
4221adantr 481 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ)
4342rexrd 11214 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ*)
44 sgnsgn 33237 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4543, 44syl 17 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4641, 45eqtrd 2771 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4746oveq2d 7378 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4825, 47breqtrrd 5138 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))))
491adantr 481 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℝ)
50 sgnclre 33228 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5142, 50syl 17 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘𝐵) ∈ ℝ)
5240, 51eqeltrd 2832 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgp 33239 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5449, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5548, 54mpbird 256 . 2 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))))
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2731 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5933, 34, 35, 36, 4, 56, 57, 1, 8, 58signsvtp 33284 . 2 ((𝜑 ∧ 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1)))) → (𝑉𝐹) = (𝑉𝐸))
6055, 59syldan 591 1 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  cdif 3910  c0 4287  ifcif 4491  {csn 4591  {cpr 4593  {ctp 4595  cop 4597   class class class wbr 5110  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  cmpo 7364  cc 11058  cr 11059  0cc0 11060  1c1 11061   · cmul 11065  *cxr 11197   < clt 11198  cmin 11394  -cneg 11395  cn 12162  ...cfz 13434  ..^cfzo 13577  chash 14240  Word cword 14414   ++ cconcat 14470  ⟨“cs1 14495  sgncsgn 14983  Σcsu 15582  ndxcnx 17076  Basecbs 17094  +gcplusg 17147   Σg cgsu 17336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-word 14415  df-lsw 14463  df-concat 14471  df-s1 14496  df-substr 14541  df-pfx 14571  df-sgn 14984  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-sum 15583  df-struct 17030  df-slot 17065  df-ndx 17077  df-base 17095  df-plusg 17160  df-0g 17337  df-gsum 17338  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mulg 18887  df-cntz 19111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator