Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfpn Structured version   Visualization version   GIF version

Theorem signsvfpn 34559
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfpn ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfpn
StepHypRef Expression
1 signsvf.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
21recnd 11271 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
4 signsvf.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
54eldifad 3943 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Word ℝ)
6 wrdf 14539 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
8 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
98oveq1i 7423 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
10 eldifsn 4766 . . . . . . . . . . . . . 14 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
114, 10sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
12 lennncl 14554 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
13 fzo0end 13779 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1411, 12, 133syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
159, 14eqeltrid 2837 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
167, 15ffvelcdmd 7085 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1716recnd 11271 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
183, 17eqeltrid 2837 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
192, 18mulcomd 11264 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2019breq2d 5135 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴)))
213, 16eqeltrid 2837 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
22 sgnmulsgp 34512 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
231, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2420, 23bitr3d 281 . . . . 5 (𝜑 → (0 < (𝐵 · 𝐴) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2524biimpa 476 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘𝐵)))
264adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2718adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℂ)
282adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℂ)
29 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐵 · 𝐴))
3029gt0ne0d 11809 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐵 · 𝐴) ≠ 0)
3127, 28, 30mulne0bad 11900 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ≠ 0)
323, 31eqnetrrid 3006 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐸‘(𝑁 − 1)) ≠ 0)
33 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
34 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
35 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
36 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3733, 34, 35, 36, 8signsvtn0 34544 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
383fveq2i 6889 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3937, 38eqtr4di 2787 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4026, 32, 39syl2anc 584 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4140fveq2d 6890 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
4221adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ)
4342rexrd 11293 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ*)
44 sgnsgn 34510 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4543, 44syl 17 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4641, 45eqtrd 2769 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4746oveq2d 7429 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4825, 47breqtrrd 5151 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))))
491adantr 480 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℝ)
50 sgnclre 34501 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5142, 50syl 17 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘𝐵) ∈ ℝ)
5240, 51eqeltrd 2833 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgp 34512 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5449, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5548, 54mpbird 257 . 2 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))))
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2734 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5933, 34, 35, 36, 4, 56, 57, 1, 8, 58signsvtp 34557 . 2 ((𝜑 ∧ 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1)))) → (𝑉𝐹) = (𝑉𝐸))
6055, 59syldan 591 1 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3928  c0 4313  ifcif 4505  {csn 4606  {cpr 4608  {ctp 4610  cop 4612   class class class wbr 5123  cmpt 5205  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415  cc 11135  cr 11136  0cc0 11137  1c1 11138   · cmul 11142  *cxr 11276   < clt 11277  cmin 11474  -cneg 11475  cn 12248  ...cfz 13529  ..^cfzo 13676  chash 14351  Word cword 14534   ++ cconcat 14590  ⟨“cs1 14615  sgncsgn 15107  Σcsu 15704  ndxcnx 17212  Basecbs 17229  +gcplusg 17273   Σg cgsu 17456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14352  df-word 14535  df-lsw 14583  df-concat 14591  df-s1 14616  df-substr 14661  df-pfx 14691  df-sgn 15108  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-sum 15705  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-0g 17457  df-gsum 17458  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mulg 19055  df-cntz 19304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator