Proof of Theorem signsvfpn
| Step | Hyp | Ref
| Expression |
| 1 | | signsvf.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | 1 | recnd 11289 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | | signsvf.b |
. . . . . . . . 9
⊢ 𝐵 = (𝐸‘(𝑁 − 1)) |
| 4 | | signsvf.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖
{∅})) |
| 5 | 4 | eldifad 3963 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ Word ℝ) |
| 6 | | wrdf 14557 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ Word ℝ →
𝐸:(0..^(♯‘𝐸))⟶ℝ) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))⟶ℝ) |
| 8 | | signsvf.n |
. . . . . . . . . . . . 13
⊢ 𝑁 = (♯‘𝐸) |
| 9 | 8 | oveq1i 7441 |
. . . . . . . . . . . 12
⊢ (𝑁 − 1) =
((♯‘𝐸) −
1) |
| 10 | | eldifsn 4786 |
. . . . . . . . . . . . . 14
⊢ (𝐸 ∈ (Word ℝ ∖
{∅}) ↔ (𝐸 ∈
Word ℝ ∧ 𝐸 ≠
∅)) |
| 11 | 4, 10 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅)) |
| 12 | | lennncl 14572 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) →
(♯‘𝐸) ∈
ℕ) |
| 13 | | fzo0end 13797 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐸)
∈ ℕ → ((♯‘𝐸) − 1) ∈
(0..^(♯‘𝐸))) |
| 14 | 11, 12, 13 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐸) − 1) ∈
(0..^(♯‘𝐸))) |
| 15 | 9, 14 | eqeltrid 2845 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸))) |
| 16 | 7, 15 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸‘(𝑁 − 1)) ∈
ℝ) |
| 17 | 16 | recnd 11289 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘(𝑁 − 1)) ∈
ℂ) |
| 18 | 3, 17 | eqeltrid 2845 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 19 | 2, 18 | mulcomd 11282 |
. . . . . . 7
⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| 20 | 19 | breq2d 5155 |
. . . . . 6
⊢ (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴))) |
| 21 | 3, 16 | eqeltrid 2845 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 22 | | sgnmulsgp 34553 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 <
(𝐴 · 𝐵) ↔ 0 <
((sgn‘𝐴) ·
(sgn‘𝐵)))) |
| 23 | 1, 21, 22 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵)))) |
| 24 | 20, 23 | bitr3d 281 |
. . . . 5
⊢ (𝜑 → (0 < (𝐵 · 𝐴) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵)))) |
| 25 | 24 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘𝐵))) |
| 26 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐸 ∈ (Word ℝ ∖
{∅})) |
| 27 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℂ) |
| 28 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℂ) |
| 29 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐵 · 𝐴)) |
| 30 | 29 | gt0ne0d 11827 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐵 · 𝐴) ≠ 0) |
| 31 | 27, 28, 30 | mulne0bad 11918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ≠ 0) |
| 32 | 3, 31 | eqnetrrid 3016 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐸‘(𝑁 − 1)) ≠ 0) |
| 33 | | signsv.p |
. . . . . . . . . 10
⊢ ⨣ =
(𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦
if(𝑏 = 0, 𝑎, 𝑏)) |
| 34 | | signsv.w |
. . . . . . . . . 10
⊢ 𝑊 = {〈(Base‘ndx), {-1,
0, 1}〉, 〈(+g‘ndx), ⨣
〉} |
| 35 | | signsv.t |
. . . . . . . . . 10
⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈
(0..^(♯‘𝑓))
↦ (𝑊
Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| 36 | | signsv.v |
. . . . . . . . . 10
⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈
(1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| 37 | 33, 34, 35, 36, 8 | signsvtn0 34585 |
. . . . . . . . 9
⊢ ((𝐸 ∈ (Word ℝ ∖
{∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇‘𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1)))) |
| 38 | 3 | fveq2i 6909 |
. . . . . . . . 9
⊢
(sgn‘𝐵) =
(sgn‘(𝐸‘(𝑁 − 1))) |
| 39 | 37, 38 | eqtr4di 2795 |
. . . . . . . 8
⊢ ((𝐸 ∈ (Word ℝ ∖
{∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇‘𝐸)‘(𝑁 − 1)) = (sgn‘𝐵)) |
| 40 | 26, 32, 39 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇‘𝐸)‘(𝑁 − 1)) = (sgn‘𝐵)) |
| 41 | 40 | fveq2d 6910 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇‘𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵))) |
| 42 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ) |
| 43 | 42 | rexrd 11311 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈
ℝ*) |
| 44 | | sgnsgn 34551 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ (sgn‘(sgn‘𝐵)) = (sgn‘𝐵)) |
| 45 | 43, 44 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵)) |
| 46 | 41, 45 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇‘𝐸)‘(𝑁 − 1))) = (sgn‘𝐵)) |
| 47 | 46 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((sgn‘𝐴) · (sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵))) |
| 48 | 25, 47 | breqtrrd 5171 |
. . 3
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘((𝑇‘𝐸)‘(𝑁 − 1))))) |
| 49 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℝ) |
| 50 | | sgnclre 34542 |
. . . . . 6
⊢ (𝐵 ∈ ℝ →
(sgn‘𝐵) ∈
ℝ) |
| 51 | 42, 50 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘𝐵) ∈ ℝ) |
| 52 | 40, 51 | eqeltrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇‘𝐸)‘(𝑁 − 1)) ∈
ℝ) |
| 53 | | sgnmulsgp 34553 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ((𝑇‘𝐸)‘(𝑁 − 1)) ∈ ℝ) → (0 <
(𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1))) ↔ 0 <
((sgn‘𝐴) ·
(sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))))) |
| 54 | 49, 52, 53 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (0 < (𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1))) ↔ 0 <
((sgn‘𝐴) ·
(sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))))) |
| 55 | 48, 54 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1)))) |
| 56 | | signsvf.0 |
. . 3
⊢ (𝜑 → (𝐸‘0) ≠ 0) |
| 57 | | signsvf.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) |
| 58 | | eqid 2737 |
. . 3
⊢ ((𝑇‘𝐸)‘(𝑁 − 1)) = ((𝑇‘𝐸)‘(𝑁 − 1)) |
| 59 | 33, 34, 35, 36, 4, 56, 57, 1, 8, 58 | signsvtp 34598 |
. 2
⊢ ((𝜑 ∧ 0 < (𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1)))) → (𝑉‘𝐹) = (𝑉‘𝐸)) |
| 60 | 55, 59 | syldan 591 |
1
⊢ ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉‘𝐹) = (𝑉‘𝐸)) |