Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfpn Structured version   Visualization version   GIF version

Theorem signsvfpn 34576
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfpn ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfpn
StepHypRef Expression
1 signsvf.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
21recnd 11202 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
4 signsvf.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
54eldifad 3926 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Word ℝ)
6 wrdf 14483 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
8 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
98oveq1i 7397 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
10 eldifsn 4750 . . . . . . . . . . . . . 14 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
114, 10sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
12 lennncl 14499 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
13 fzo0end 13719 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1411, 12, 133syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
159, 14eqeltrid 2832 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
167, 15ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1716recnd 11202 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
183, 17eqeltrid 2832 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
192, 18mulcomd 11195 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2019breq2d 5119 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴)))
213, 16eqeltrid 2832 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
22 sgnmulsgp 32768 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
231, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2420, 23bitr3d 281 . . . . 5 (𝜑 → (0 < (𝐵 · 𝐴) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2524biimpa 476 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘𝐵)))
264adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2718adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℂ)
282adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℂ)
29 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐵 · 𝐴))
3029gt0ne0d 11742 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐵 · 𝐴) ≠ 0)
3127, 28, 30mulne0bad 11833 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ≠ 0)
323, 31eqnetrrid 3000 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐸‘(𝑁 − 1)) ≠ 0)
33 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
34 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
35 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
36 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3733, 34, 35, 36, 8signsvtn0 34561 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
383fveq2i 6861 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3937, 38eqtr4di 2782 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4026, 32, 39syl2anc 584 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4140fveq2d 6862 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
4221adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ)
4342rexrd 11224 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ*)
44 sgnsgn 32766 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4543, 44syl 17 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4641, 45eqtrd 2764 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4746oveq2d 7403 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4825, 47breqtrrd 5135 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))))
491adantr 480 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℝ)
50 sgnclre 32757 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5142, 50syl 17 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘𝐵) ∈ ℝ)
5240, 51eqeltrd 2828 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgp 32768 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5449, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5548, 54mpbird 257 . 2 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))))
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2729 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5933, 34, 35, 36, 4, 56, 57, 1, 8, 58signsvtp 34574 . 2 ((𝜑 ∧ 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1)))) → (𝑉𝐹) = (𝑉𝐸))
6055, 59syldan 591 1 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  c0 4296  ifcif 4488  {csn 4589  {cpr 4591  {ctp 4593  cop 4595   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cmin 11405  -cneg 11406  cn 12186  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560  sgncsgn 15052  Σcsu 15652  ndxcnx 17163  Basecbs 17179  +gcplusg 17220   Σg cgsu 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-sgn 15053  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mulg 19000  df-cntz 19249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator