MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem2 Structured version   Visualization version   GIF version

Theorem ptcmplem2 23973
Description: Lemma for ptcmp 23978. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
Assertion
Ref Expression
ptcmplem2 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)

Proof of Theorem ptcmplem2
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmplem2.7 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
2 0ss 4359 . . . . . . 7 ∅ ⊆ 𝑈
3 0fi 8990 . . . . . . 7 ∅ ∈ Fin
4 elfpw 9281 . . . . . . 7 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ⊆ 𝑈 ∧ ∅ ∈ Fin))
52, 3, 4mpbir2an 711 . . . . . 6 ∅ ∈ (𝒫 𝑈 ∩ Fin)
6 unieq 4878 . . . . . . . 8 (𝑧 = ∅ → 𝑧 = ∅)
7 uni0 4895 . . . . . . . 8 ∅ = ∅
86, 7eqtrdi 2780 . . . . . . 7 (𝑧 = ∅ → 𝑧 = ∅)
98rspceeqv 3608 . . . . . 6 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ∅) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
105, 9mpan 690 . . . . 5 (𝑋 = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
1110necon3bi 2951 . . . 4 (¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧𝑋 ≠ ∅)
121, 11syl 17 . . 3 (𝜑𝑋 ≠ ∅)
13 n0 4312 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑓 𝑓𝑋)
1412, 13sylib 218 . 2 (𝜑 → ∃𝑓 𝑓𝑋)
15 ptcmp.2 . . . . . . 7 𝑋 = X𝑛𝐴 (𝐹𝑛)
16 fveq2 6840 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1716unieqd 4880 . . . . . . . 8 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1817cbvixpv 8865 . . . . . . 7 X𝑛𝐴 (𝐹𝑛) = X𝑘𝐴 (𝐹𝑘)
1915, 18eqtri 2752 . . . . . 6 𝑋 = X𝑘𝐴 (𝐹𝑘)
20 ptcmp.5 . . . . . . . 8 (𝜑𝑋 ∈ (UFL ∩ dom card))
2120elin2d 4164 . . . . . . 7 (𝜑𝑋 ∈ dom card)
2221adantr 480 . . . . . 6 ((𝜑𝑓𝑋) → 𝑋 ∈ dom card)
2319, 22eqeltrrid 2833 . . . . 5 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ∈ dom card)
24 ssrab2 4039 . . . . . 6 {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ 𝐴
2512adantr 480 . . . . . . 7 ((𝜑𝑓𝑋) → 𝑋 ≠ ∅)
2619, 25eqnetrrid 3000 . . . . . 6 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ≠ ∅)
27 eqid 2729 . . . . . . 7 (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})) = (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}))
2827resixpfo 8886 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ 𝐴X𝑘𝐴 (𝐹𝑘) ≠ ∅) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
2924, 26, 28sylancr 587 . . . . 5 ((𝜑𝑓𝑋) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
30 fonum 9987 . . . . 5 ((X𝑘𝐴 (𝐹𝑘) ∈ dom card ∧ (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘)) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
3123, 29, 30syl2anc 584 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
32 vex 3448 . . . . . . . . . . 11 𝑔 ∈ V
33 difexg 5279 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝑓) ∈ V)
3432, 33mp1i 13 . . . . . . . . . 10 ((𝜑𝑓𝑋) → (𝑔𝑓) ∈ V)
35 dmexg 7857 . . . . . . . . . 10 ((𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
36 uniexg 7696 . . . . . . . . . 10 (dom (𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
3734, 35, 363syl 18 . . . . . . . . 9 ((𝜑𝑓𝑋) → dom (𝑔𝑓) ∈ V)
3837ralrimivw 3129 . . . . . . . 8 ((𝜑𝑓𝑋) → ∀𝑔𝑋 dom (𝑔𝑓) ∈ V)
39 eqid 2729 . . . . . . . . 9 (𝑔𝑋 dom (𝑔𝑓)) = (𝑔𝑋 dom (𝑔𝑓))
4039fnmpt 6640 . . . . . . . 8 (∀𝑔𝑋 dom (𝑔𝑓) ∈ V → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
4138, 40syl 17 . . . . . . 7 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
42 dffn4 6760 . . . . . . 7 ((𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋 ↔ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
4341, 42sylib 218 . . . . . 6 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
44 fonum 9987 . . . . . 6 ((𝑋 ∈ dom card ∧ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓))) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
4522, 43, 44syl2anc 584 . . . . 5 ((𝜑𝑓𝑋) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
46 ssdif0 4325 . . . . . . . . . . . 12 ( (𝐹𝑘) ⊆ {(𝑓𝑘)} ↔ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅)
47 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ⊆ {(𝑓𝑘)})
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → 𝑓𝑋)
4948, 19eleqtrdi 2838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝑋) → 𝑓X𝑘𝐴 (𝐹𝑘))
50 vex 3448 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
5150elixp 8854 . . . . . . . . . . . . . . . . . . . 20 (𝑓X𝑘𝐴 (𝐹𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘)))
5251simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5349, 52syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝑋) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5453r19.21bi 3227 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑓𝑘) ∈ (𝐹𝑘))
5554snssd 4769 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5655adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5747, 56eqssd 3961 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) = {(𝑓𝑘)})
58 fvex 6853 . . . . . . . . . . . . . . 15 (𝑓𝑘) ∈ V
5958ensn1 8969 . . . . . . . . . . . . . 14 {(𝑓𝑘)} ≈ 1o
6057, 59eqbrtrdi 5141 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ≈ 1o)
6160ex 412 . . . . . . . . . . . 12 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → ( (𝐹𝑘) ⊆ {(𝑓𝑘)} → (𝐹𝑘) ≈ 1o))
6246, 61biimtrrid 243 . . . . . . . . . . 11 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ → (𝐹𝑘) ≈ 1o))
6362con3d 152 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1o → ¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅))
64 neq0 4311 . . . . . . . . . 10 (¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ ↔ ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}))
6563, 64imbitrdi 251 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1o → ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})))
66 eldifi 4090 . . . . . . . . . . . . 13 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 (𝐹𝑘))
67 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → 𝑥 (𝐹𝑘))
68 iftrue 4490 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = 𝑥)
6968, 17eleq12d 2822 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ 𝑥 (𝐹𝑘)))
7067, 69syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
7148, 15eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
7250elixp 8854 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
7372simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7471, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7574ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7675r19.21bi 3227 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝐹𝑛))
77 iffalse 4493 . . . . . . . . . . . . . . . . . . 19 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = (𝑓𝑛))
7877eleq1d 2813 . . . . . . . . . . . . . . . . . 18 𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ (𝑓𝑛) ∈ (𝐹𝑛)))
7976, 78syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (¬ 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8070, 79pm2.61d 179 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
8180ralrimiva 3125 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
82 ptcmp.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
8382ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → 𝐴𝑉)
84 mptelixpg 8885 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8681, 85mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛))
8786, 15eleqtrrdi 2839 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
8866, 87sylan2 593 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
89 unisnv 4887 . . . . . . . . . . . . 13 {𝑘} = 𝑘
90 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘𝐴)
91 eleq1w 2811 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝑚𝐴𝑘𝐴))
9290, 91syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘𝑚𝐴))
9392pm4.71rd 562 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴𝑚 = 𝑘)))
94 equequ1 2025 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑛 = 𝑘𝑚 = 𝑘))
95 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9694, 95ifbieq2d 4511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
97 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))
98 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
99 fvex 6853 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑚) ∈ V
10098, 99ifex 4535 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ∈ V
10196, 97, 100fvmpt 6950 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝐴 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
102101neeq1d 2984 . . . . . . . . . . . . . . . . . . . . 21 (𝑚𝐴 → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
103102adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
104 iffalse 4493 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = (𝑓𝑚))
105104necon1ai 2952 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) → 𝑚 = 𝑘)
106 eldifsni 4750 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 ≠ (𝑓𝑘))
107106ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → 𝑥 ≠ (𝑓𝑘))
108 iftrue 4490 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = 𝑥)
109 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝑓𝑚) = (𝑓𝑘))
110108, 109neeq12d 2986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑥 ≠ (𝑓𝑘)))
111107, 110syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
112105, 111impbid2 226 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
113103, 112bitrd 279 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
114113pm5.32da 579 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ((𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)) ↔ (𝑚𝐴𝑚 = 𝑘)))
11593, 114bitr4d 282 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))))
116115abbidv 2795 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑚𝑚 = 𝑘} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))})
117 df-sn 4586 . . . . . . . . . . . . . . . 16 {𝑘} = {𝑚𝑚 = 𝑘}
118 df-rab 3403 . . . . . . . . . . . . . . . 16 {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))}
119116, 117, 1183eqtr4g 2789 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
120 fvex 6853 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑛) ∈ V
12198, 120ifex 4535 . . . . . . . . . . . . . . . . . 18 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
122121rgenw 3048 . . . . . . . . . . . . . . . . 17 𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
12397fnmpt 6640 . . . . . . . . . . . . . . . . 17 (∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
124122, 123mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
125 ixpfn 8853 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑛𝐴 (𝐹𝑛) → 𝑓 Fn 𝐴)
12671, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐴)
127126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑓 Fn 𝐴)
128 fndmdif 6996 . . . . . . . . . . . . . . . 16 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴𝑓 Fn 𝐴) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
129124, 127, 128syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
130119, 129eqtr4d 2767 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
131130unieqd 4880 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
13289, 131eqtr3id 2778 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
133 difeq1 4078 . . . . . . . . . . . . . . 15 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → (𝑔𝑓) = ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
134133dmeqd 5859 . . . . . . . . . . . . . 14 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
135134unieqd 4880 . . . . . . . . . . . . 13 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
136135rspceeqv 3608 . . . . . . . . . . . 12 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓)) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
13788, 132, 136syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
138137ex 412 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
139138exlimdv 1933 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14065, 139syld 47 . . . . . . . 8 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1o → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
141140expimpd 453 . . . . . . 7 ((𝜑𝑓𝑋) → ((𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1o) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14217breq1d 5112 . . . . . . . . 9 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1o (𝐹𝑘) ≈ 1o))
143142notbid 318 . . . . . . . 8 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1o ↔ ¬ (𝐹𝑘) ≈ 1o))
144143elrab 3656 . . . . . . 7 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ↔ (𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1o))
14539elrnmpt 5911 . . . . . . . 8 (𝑘 ∈ V → (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
146145elv 3449 . . . . . . 7 (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
147141, 144, 1463imtr4g 296 . . . . . 6 ((𝜑𝑓𝑋) → (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} → 𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓))))
148147ssrdv 3949 . . . . 5 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ ran (𝑔𝑋 dom (𝑔𝑓)))
149 ssnum 9968 . . . . 5 ((ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ ran (𝑔𝑋 dom (𝑔𝑓))) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ dom card)
15045, 148, 149syl2anc 584 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ dom card)
151 xpnum 9880 . . . 4 ((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ dom card) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ dom card)
15231, 150, 151syl2anc 584 . . 3 ((𝜑𝑓𝑋) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ dom card)
15382adantr 480 . . . . 5 ((𝜑𝑓𝑋) → 𝐴𝑉)
154 rabexg 5287 . . . . 5 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
155153, 154syl 17 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
156 fvex 6853 . . . . . . 7 (𝐹𝑘) ∈ V
157156uniex 7697 . . . . . 6 (𝐹𝑘) ∈ V
158157rgenw 3048 . . . . 5 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V
159 iunexg 7921 . . . . 5 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V)
160155, 158, 159sylancl 586 . . . 4 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V)
161 resixp 8883 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ 𝐴𝑓X𝑘𝐴 (𝐹𝑘)) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
16224, 49, 161sylancr 587 . . . . 5 ((𝜑𝑓𝑋) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
163162ne0d 4301 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≠ ∅)
164 ixpiunwdom 9519 . . . 4 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V ∧ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≠ ∅) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}))
165155, 160, 163, 164syl3anc 1373 . . 3 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}))
166 numwdom 9988 . . 3 (((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
167152, 165, 166syl2anc 584 . 2 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
16814, 167exlimddv 1935 1 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292  ifcif 4484  𝒫 cpw 4559  {csn 4585   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  cmpo 7371  1oc1o 8404  Xcixp 8847  cen 8892  Fincfn 8895  * cwdom 9493  cardccrd 9864  Compccmp 23306  UFLcufl 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-fin 8899  df-wdom 9494  df-card 9868  df-acn 9871
This theorem is referenced by:  ptcmplem3  23974
  Copyright terms: Public domain W3C validator