MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem2 Structured version   Visualization version   GIF version

Theorem ptcmplem2 23976
Description: Lemma for ptcmp 23981. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
Assertion
Ref Expression
ptcmplem2 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)

Proof of Theorem ptcmplem2
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmplem2.7 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
2 0ss 4373 . . . . . . 7 ∅ ⊆ 𝑈
3 0fi 9050 . . . . . . 7 ∅ ∈ Fin
4 elfpw 9360 . . . . . . 7 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ⊆ 𝑈 ∧ ∅ ∈ Fin))
52, 3, 4mpbir2an 711 . . . . . 6 ∅ ∈ (𝒫 𝑈 ∩ Fin)
6 unieq 4891 . . . . . . . 8 (𝑧 = ∅ → 𝑧 = ∅)
7 uni0 4908 . . . . . . . 8 ∅ = ∅
86, 7eqtrdi 2785 . . . . . . 7 (𝑧 = ∅ → 𝑧 = ∅)
98rspceeqv 3622 . . . . . 6 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ∅) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
105, 9mpan 690 . . . . 5 (𝑋 = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
1110necon3bi 2957 . . . 4 (¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧𝑋 ≠ ∅)
121, 11syl 17 . . 3 (𝜑𝑋 ≠ ∅)
13 n0 4326 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑓 𝑓𝑋)
1412, 13sylib 218 . 2 (𝜑 → ∃𝑓 𝑓𝑋)
15 ptcmp.2 . . . . . . 7 𝑋 = X𝑛𝐴 (𝐹𝑛)
16 fveq2 6872 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1716unieqd 4893 . . . . . . . 8 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1817cbvixpv 8923 . . . . . . 7 X𝑛𝐴 (𝐹𝑛) = X𝑘𝐴 (𝐹𝑘)
1915, 18eqtri 2757 . . . . . 6 𝑋 = X𝑘𝐴 (𝐹𝑘)
20 ptcmp.5 . . . . . . . 8 (𝜑𝑋 ∈ (UFL ∩ dom card))
2120elin2d 4178 . . . . . . 7 (𝜑𝑋 ∈ dom card)
2221adantr 480 . . . . . 6 ((𝜑𝑓𝑋) → 𝑋 ∈ dom card)
2319, 22eqeltrrid 2838 . . . . 5 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ∈ dom card)
24 ssrab2 4053 . . . . . 6 {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ 𝐴
2512adantr 480 . . . . . . 7 ((𝜑𝑓𝑋) → 𝑋 ≠ ∅)
2619, 25eqnetrrid 3006 . . . . . 6 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ≠ ∅)
27 eqid 2734 . . . . . . 7 (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})) = (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}))
2827resixpfo 8944 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ 𝐴X𝑘𝐴 (𝐹𝑘) ≠ ∅) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
2924, 26, 28sylancr 587 . . . . 5 ((𝜑𝑓𝑋) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
30 fonum 10064 . . . . 5 ((X𝑘𝐴 (𝐹𝑘) ∈ dom card ∧ (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘)) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
3123, 29, 30syl2anc 584 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
32 vex 3461 . . . . . . . . . . 11 𝑔 ∈ V
33 difexg 5296 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝑓) ∈ V)
3432, 33mp1i 13 . . . . . . . . . 10 ((𝜑𝑓𝑋) → (𝑔𝑓) ∈ V)
35 dmexg 7891 . . . . . . . . . 10 ((𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
36 uniexg 7728 . . . . . . . . . 10 (dom (𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
3734, 35, 363syl 18 . . . . . . . . 9 ((𝜑𝑓𝑋) → dom (𝑔𝑓) ∈ V)
3837ralrimivw 3134 . . . . . . . 8 ((𝜑𝑓𝑋) → ∀𝑔𝑋 dom (𝑔𝑓) ∈ V)
39 eqid 2734 . . . . . . . . 9 (𝑔𝑋 dom (𝑔𝑓)) = (𝑔𝑋 dom (𝑔𝑓))
4039fnmpt 6674 . . . . . . . 8 (∀𝑔𝑋 dom (𝑔𝑓) ∈ V → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
4138, 40syl 17 . . . . . . 7 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
42 dffn4 6792 . . . . . . 7 ((𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋 ↔ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
4341, 42sylib 218 . . . . . 6 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
44 fonum 10064 . . . . . 6 ((𝑋 ∈ dom card ∧ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓))) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
4522, 43, 44syl2anc 584 . . . . 5 ((𝜑𝑓𝑋) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
46 ssdif0 4339 . . . . . . . . . . . 12 ( (𝐹𝑘) ⊆ {(𝑓𝑘)} ↔ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅)
47 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ⊆ {(𝑓𝑘)})
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → 𝑓𝑋)
4948, 19eleqtrdi 2843 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝑋) → 𝑓X𝑘𝐴 (𝐹𝑘))
50 vex 3461 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
5150elixp 8912 . . . . . . . . . . . . . . . . . . . 20 (𝑓X𝑘𝐴 (𝐹𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘)))
5251simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5349, 52syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝑋) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5453r19.21bi 3232 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑓𝑘) ∈ (𝐹𝑘))
5554snssd 4782 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5655adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5747, 56eqssd 3974 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) = {(𝑓𝑘)})
58 fvex 6885 . . . . . . . . . . . . . . 15 (𝑓𝑘) ∈ V
5958ensn1 9029 . . . . . . . . . . . . . 14 {(𝑓𝑘)} ≈ 1o
6057, 59eqbrtrdi 5155 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ≈ 1o)
6160ex 412 . . . . . . . . . . . 12 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → ( (𝐹𝑘) ⊆ {(𝑓𝑘)} → (𝐹𝑘) ≈ 1o))
6246, 61biimtrrid 243 . . . . . . . . . . 11 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ → (𝐹𝑘) ≈ 1o))
6362con3d 152 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1o → ¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅))
64 neq0 4325 . . . . . . . . . 10 (¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ ↔ ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}))
6563, 64imbitrdi 251 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1o → ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})))
66 eldifi 4104 . . . . . . . . . . . . 13 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 (𝐹𝑘))
67 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → 𝑥 (𝐹𝑘))
68 iftrue 4504 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = 𝑥)
6968, 17eleq12d 2827 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ 𝑥 (𝐹𝑘)))
7067, 69syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
7148, 15eleqtrdi 2843 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
7250elixp 8912 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
7372simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7471, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7574ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7675r19.21bi 3232 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝐹𝑛))
77 iffalse 4507 . . . . . . . . . . . . . . . . . . 19 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = (𝑓𝑛))
7877eleq1d 2818 . . . . . . . . . . . . . . . . . 18 𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ (𝑓𝑛) ∈ (𝐹𝑛)))
7976, 78syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (¬ 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8070, 79pm2.61d 179 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
8180ralrimiva 3130 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
82 ptcmp.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
8382ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → 𝐴𝑉)
84 mptelixpg 8943 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8681, 85mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛))
8786, 15eleqtrrdi 2844 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
8866, 87sylan2 593 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
89 unisnv 4900 . . . . . . . . . . . . 13 {𝑘} = 𝑘
90 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘𝐴)
91 eleq1w 2816 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝑚𝐴𝑘𝐴))
9290, 91syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘𝑚𝐴))
9392pm4.71rd 562 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴𝑚 = 𝑘)))
94 equequ1 2023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑛 = 𝑘𝑚 = 𝑘))
95 fveq2 6872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9694, 95ifbieq2d 4525 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
97 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))
98 vex 3461 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
99 fvex 6885 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑚) ∈ V
10098, 99ifex 4549 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ∈ V
10196, 97, 100fvmpt 6982 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝐴 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
102101neeq1d 2990 . . . . . . . . . . . . . . . . . . . . 21 (𝑚𝐴 → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
103102adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
104 iffalse 4507 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = (𝑓𝑚))
105104necon1ai 2958 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) → 𝑚 = 𝑘)
106 eldifsni 4763 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 ≠ (𝑓𝑘))
107106ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → 𝑥 ≠ (𝑓𝑘))
108 iftrue 4504 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = 𝑥)
109 fveq2 6872 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝑓𝑚) = (𝑓𝑘))
110108, 109neeq12d 2992 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑥 ≠ (𝑓𝑘)))
111107, 110syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
112105, 111impbid2 226 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
113103, 112bitrd 279 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
114113pm5.32da 579 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ((𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)) ↔ (𝑚𝐴𝑚 = 𝑘)))
11593, 114bitr4d 282 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))))
116115abbidv 2800 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑚𝑚 = 𝑘} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))})
117 df-sn 4600 . . . . . . . . . . . . . . . 16 {𝑘} = {𝑚𝑚 = 𝑘}
118 df-rab 3414 . . . . . . . . . . . . . . . 16 {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))}
119116, 117, 1183eqtr4g 2794 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
120 fvex 6885 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑛) ∈ V
12198, 120ifex 4549 . . . . . . . . . . . . . . . . . 18 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
122121rgenw 3054 . . . . . . . . . . . . . . . . 17 𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
12397fnmpt 6674 . . . . . . . . . . . . . . . . 17 (∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
124122, 123mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
125 ixpfn 8911 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑛𝐴 (𝐹𝑛) → 𝑓 Fn 𝐴)
12671, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐴)
127126ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑓 Fn 𝐴)
128 fndmdif 7028 . . . . . . . . . . . . . . . 16 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴𝑓 Fn 𝐴) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
129124, 127, 128syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
130119, 129eqtr4d 2772 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
131130unieqd 4893 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
13289, 131eqtr3id 2783 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
133 difeq1 4092 . . . . . . . . . . . . . . 15 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → (𝑔𝑓) = ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
134133dmeqd 5882 . . . . . . . . . . . . . 14 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
135134unieqd 4893 . . . . . . . . . . . . 13 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
136135rspceeqv 3622 . . . . . . . . . . . 12 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓)) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
13788, 132, 136syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
138137ex 412 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
139138exlimdv 1932 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14065, 139syld 47 . . . . . . . 8 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1o → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
141140expimpd 453 . . . . . . 7 ((𝜑𝑓𝑋) → ((𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1o) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14217breq1d 5126 . . . . . . . . 9 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1o (𝐹𝑘) ≈ 1o))
143142notbid 318 . . . . . . . 8 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1o ↔ ¬ (𝐹𝑘) ≈ 1o))
144143elrab 3669 . . . . . . 7 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ↔ (𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1o))
14539elrnmpt 5935 . . . . . . . 8 (𝑘 ∈ V → (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
146145elv 3462 . . . . . . 7 (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
147141, 144, 1463imtr4g 296 . . . . . 6 ((𝜑𝑓𝑋) → (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} → 𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓))))
148147ssrdv 3962 . . . . 5 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ ran (𝑔𝑋 dom (𝑔𝑓)))
149 ssnum 10045 . . . . 5 ((ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ ran (𝑔𝑋 dom (𝑔𝑓))) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ dom card)
15045, 148, 149syl2anc 584 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ dom card)
151 xpnum 9957 . . . 4 ((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ dom card) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ dom card)
15231, 150, 151syl2anc 584 . . 3 ((𝜑𝑓𝑋) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ dom card)
15382adantr 480 . . . . 5 ((𝜑𝑓𝑋) → 𝐴𝑉)
154 rabexg 5304 . . . . 5 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
155153, 154syl 17 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
156 fvex 6885 . . . . . . 7 (𝐹𝑘) ∈ V
157156uniex 7729 . . . . . 6 (𝐹𝑘) ∈ V
158157rgenw 3054 . . . . 5 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V
159 iunexg 7956 . . . . 5 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V)
160155, 158, 159sylancl 586 . . . 4 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V)
161 resixp 8941 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ⊆ 𝐴𝑓X𝑘𝐴 (𝐹𝑘)) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
16224, 49, 161sylancr 587 . . . . 5 ((𝜑𝑓𝑋) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
163162ne0d 4315 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≠ ∅)
164 ixpiunwdom 9596 . . . 4 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ V ∧ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≠ ∅) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}))
165155, 160, 163, 164syl3anc 1372 . . 3 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}))
166 numwdom 10065 . . 3 (((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o})) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
167152, 165, 166syl2anc 584 . 2 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
16814, 167exlimddv 1934 1 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wne 2931  wral 3050  wrex 3059  {crab 3413  Vcvv 3457  cdif 3921  cin 3923  wss 3924  c0 4306  ifcif 4498  𝒫 cpw 4573  {csn 4599   cuni 4880   ciun 4964   class class class wbr 5116  cmpt 5198   × cxp 5649  ccnv 5650  dom cdm 5651  ran crn 5652  cres 5653  cima 5654   Fn wfn 6522  wf 6523  ontowfo 6525  cfv 6527  cmpo 7401  1oc1o 8467  Xcixp 8905  cen 8950  Fincfn 8953  * cwdom 9570  cardccrd 9941  Compccmp 23309  UFLcufl 23823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-oadd 8478  df-omul 8479  df-er 8713  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-fin 8957  df-wdom 9571  df-card 9945  df-acn 9948
This theorem is referenced by:  ptcmplem3  23977
  Copyright terms: Public domain W3C validator