MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem2 Structured version   Visualization version   GIF version

Theorem ptcmplem2 22136
Description: Lemma for ptcmp 22141. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
Assertion
Ref Expression
ptcmplem2 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)

Proof of Theorem ptcmplem2
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmplem2.7 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
2 0ss 4134 . . . . . . 7 ∅ ⊆ 𝑈
3 0fin 8395 . . . . . . 7 ∅ ∈ Fin
4 elfpw 8475 . . . . . . 7 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ⊆ 𝑈 ∧ ∅ ∈ Fin))
52, 3, 4mpbir2an 702 . . . . . 6 ∅ ∈ (𝒫 𝑈 ∩ Fin)
6 unieq 4602 . . . . . . . 8 (𝑧 = ∅ → 𝑧 = ∅)
7 uni0 4623 . . . . . . . 8 ∅ = ∅
86, 7syl6eq 2815 . . . . . . 7 (𝑧 = ∅ → 𝑧 = ∅)
98rspceeqv 3479 . . . . . 6 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ∅) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
105, 9mpan 681 . . . . 5 (𝑋 = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
1110necon3bi 2963 . . . 4 (¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧𝑋 ≠ ∅)
121, 11syl 17 . . 3 (𝜑𝑋 ≠ ∅)
13 n0 4095 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑓 𝑓𝑋)
1412, 13sylib 209 . 2 (𝜑 → ∃𝑓 𝑓𝑋)
15 ptcmp.2 . . . . . . 7 𝑋 = X𝑛𝐴 (𝐹𝑛)
16 fveq2 6375 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1716unieqd 4604 . . . . . . . 8 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1817cbvixpv 8131 . . . . . . 7 X𝑛𝐴 (𝐹𝑛) = X𝑘𝐴 (𝐹𝑘)
1915, 18eqtri 2787 . . . . . 6 𝑋 = X𝑘𝐴 (𝐹𝑘)
20 inss2 3993 . . . . . . . 8 (UFL ∩ dom card) ⊆ dom card
21 ptcmp.5 . . . . . . . 8 (𝜑𝑋 ∈ (UFL ∩ dom card))
2220, 21sseldi 3759 . . . . . . 7 (𝜑𝑋 ∈ dom card)
2322adantr 472 . . . . . 6 ((𝜑𝑓𝑋) → 𝑋 ∈ dom card)
2419, 23syl5eqelr 2849 . . . . 5 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ∈ dom card)
25 ssrab2 3847 . . . . . 6 {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ 𝐴
2612adantr 472 . . . . . . 7 ((𝜑𝑓𝑋) → 𝑋 ≠ ∅)
2719, 26syl5eqner 3012 . . . . . 6 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ≠ ∅)
28 eqid 2765 . . . . . . 7 (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})) = (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}))
2928resixpfo 8151 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ 𝐴X𝑘𝐴 (𝐹𝑘) ≠ ∅) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
3025, 27, 29sylancr 581 . . . . 5 ((𝜑𝑓𝑋) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
31 fonum 9132 . . . . 5 ((X𝑘𝐴 (𝐹𝑘) ∈ dom card ∧ (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘)) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
3224, 30, 31syl2anc 579 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
33 vex 3353 . . . . . . . . . . 11 𝑔 ∈ V
34 difexg 4969 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝑓) ∈ V)
3533, 34mp1i 13 . . . . . . . . . 10 ((𝜑𝑓𝑋) → (𝑔𝑓) ∈ V)
36 dmexg 7295 . . . . . . . . . 10 ((𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
37 uniexg 7153 . . . . . . . . . 10 (dom (𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
3835, 36, 373syl 18 . . . . . . . . 9 ((𝜑𝑓𝑋) → dom (𝑔𝑓) ∈ V)
3938ralrimivw 3114 . . . . . . . 8 ((𝜑𝑓𝑋) → ∀𝑔𝑋 dom (𝑔𝑓) ∈ V)
40 eqid 2765 . . . . . . . . 9 (𝑔𝑋 dom (𝑔𝑓)) = (𝑔𝑋 dom (𝑔𝑓))
4140fnmpt 6198 . . . . . . . 8 (∀𝑔𝑋 dom (𝑔𝑓) ∈ V → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
4239, 41syl 17 . . . . . . 7 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
43 dffn4 6304 . . . . . . 7 ((𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋 ↔ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
4442, 43sylib 209 . . . . . 6 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
45 fonum 9132 . . . . . 6 ((𝑋 ∈ dom card ∧ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓))) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
4623, 44, 45syl2anc 579 . . . . 5 ((𝜑𝑓𝑋) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
47 ssdif0 4106 . . . . . . . . . . . 12 ( (𝐹𝑘) ⊆ {(𝑓𝑘)} ↔ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅)
48 simpr 477 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ⊆ {(𝑓𝑘)})
49 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → 𝑓𝑋)
5049, 19syl6eleq 2854 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝑋) → 𝑓X𝑘𝐴 (𝐹𝑘))
51 vex 3353 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
5251elixp 8120 . . . . . . . . . . . . . . . . . . . 20 (𝑓X𝑘𝐴 (𝐹𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘)))
5352simprbi 490 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5450, 53syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝑋) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5554r19.21bi 3079 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑓𝑘) ∈ (𝐹𝑘))
5655snssd 4494 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5756adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5848, 57eqssd 3778 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) = {(𝑓𝑘)})
59 fvex 6388 . . . . . . . . . . . . . . 15 (𝑓𝑘) ∈ V
6059ensn1 8224 . . . . . . . . . . . . . 14 {(𝑓𝑘)} ≈ 1𝑜
6158, 60syl6eqbr 4848 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ≈ 1𝑜)
6261ex 401 . . . . . . . . . . . 12 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → ( (𝐹𝑘) ⊆ {(𝑓𝑘)} → (𝐹𝑘) ≈ 1𝑜))
6347, 62syl5bir 234 . . . . . . . . . . 11 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ → (𝐹𝑘) ≈ 1𝑜))
6463con3d 149 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1𝑜 → ¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅))
65 neq0 4094 . . . . . . . . . 10 (¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ ↔ ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}))
6664, 65syl6ib 242 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1𝑜 → ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})))
67 eldifi 3894 . . . . . . . . . . . . 13 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 (𝐹𝑘))
68 simplr 785 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → 𝑥 (𝐹𝑘))
69 iftrue 4249 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = 𝑥)
7069, 17eleq12d 2838 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ 𝑥 (𝐹𝑘)))
7168, 70syl5ibrcom 238 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
7249, 15syl6eleq 2854 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
7351elixp 8120 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
7473simprbi 490 . . . . . . . . . . . . . . . . . . . . 21 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7572, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7675ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7776r19.21bi 3079 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝐹𝑛))
78 iffalse 4252 . . . . . . . . . . . . . . . . . . 19 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = (𝑓𝑛))
7978eleq1d 2829 . . . . . . . . . . . . . . . . . 18 𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ (𝑓𝑛) ∈ (𝐹𝑛)))
8077, 79syl5ibrcom 238 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (¬ 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8171, 80pm2.61d 171 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
8281ralrimiva 3113 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
83 ptcmp.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
8483ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → 𝐴𝑉)
85 mptelixpg 8150 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8782, 86mpbird 248 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛))
8887, 15syl6eleqr 2855 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
8967, 88sylan2 586 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
90 vex 3353 . . . . . . . . . . . . . 14 𝑘 ∈ V
9190unisn 4610 . . . . . . . . . . . . 13 {𝑘} = 𝑘
92 simplr 785 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘𝐴)
93 eleq1w 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝑚𝐴𝑘𝐴))
9492, 93syl5ibrcom 238 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘𝑚𝐴))
9594pm4.71rd 558 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴𝑚 = 𝑘)))
96 equequ1 2122 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑛 = 𝑘𝑚 = 𝑘))
97 fveq2 6375 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9896, 97ifbieq2d 4268 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
99 eqid 2765 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))
100 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
101 fvex 6388 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑚) ∈ V
102100, 101ifex 4291 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ∈ V
10398, 99, 102fvmpt 6471 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝐴 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
104103neeq1d 2996 . . . . . . . . . . . . . . . . . . . . 21 (𝑚𝐴 → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
105104adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
106 iffalse 4252 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = (𝑓𝑚))
107106necon1ai 2964 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) → 𝑚 = 𝑘)
108 eldifsni 4476 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 ≠ (𝑓𝑘))
109108ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → 𝑥 ≠ (𝑓𝑘))
110 iftrue 4249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = 𝑥)
111 fveq2 6375 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝑓𝑚) = (𝑓𝑘))
112110, 111neeq12d 2998 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑥 ≠ (𝑓𝑘)))
113109, 112syl5ibrcom 238 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
114107, 113impbid2 217 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
115105, 114bitrd 270 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
116115pm5.32da 574 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ((𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)) ↔ (𝑚𝐴𝑚 = 𝑘)))
11795, 116bitr4d 273 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))))
118117abbidv 2884 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑚𝑚 = 𝑘} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))})
119 df-sn 4335 . . . . . . . . . . . . . . . 16 {𝑘} = {𝑚𝑚 = 𝑘}
120 df-rab 3064 . . . . . . . . . . . . . . . 16 {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))}
121118, 119, 1203eqtr4g 2824 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
122 fvex 6388 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑛) ∈ V
123100, 122ifex 4291 . . . . . . . . . . . . . . . . . 18 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
124123rgenw 3071 . . . . . . . . . . . . . . . . 17 𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
12599fnmpt 6198 . . . . . . . . . . . . . . . . 17 (∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
126124, 125mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
127 ixpfn 8119 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑛𝐴 (𝐹𝑛) → 𝑓 Fn 𝐴)
12872, 127syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐴)
129128ad2antrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑓 Fn 𝐴)
130 fndmdif 6511 . . . . . . . . . . . . . . . 16 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴𝑓 Fn 𝐴) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
131126, 129, 130syl2anc 579 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
132121, 131eqtr4d 2802 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
133132unieqd 4604 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
13491, 133syl5eqr 2813 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
135 difeq1 3883 . . . . . . . . . . . . . . 15 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → (𝑔𝑓) = ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
136135dmeqd 5494 . . . . . . . . . . . . . 14 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
137136unieqd 4604 . . . . . . . . . . . . 13 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
138137rspceeqv 3479 . . . . . . . . . . . 12 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓)) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
13989, 134, 138syl2anc 579 . . . . . . . . . . 11 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
140139ex 401 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
141140exlimdv 2028 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14266, 141syld 47 . . . . . . . 8 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1𝑜 → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
143142expimpd 445 . . . . . . 7 ((𝜑𝑓𝑋) → ((𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1𝑜) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14417breq1d 4819 . . . . . . . . 9 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1𝑜 (𝐹𝑘) ≈ 1𝑜))
145144notbid 309 . . . . . . . 8 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1𝑜 ↔ ¬ (𝐹𝑘) ≈ 1𝑜))
146145elrab 3519 . . . . . . 7 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ↔ (𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1𝑜))
14740elrnmpt 5541 . . . . . . . 8 (𝑘 ∈ V → (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14890, 147ax-mp 5 . . . . . . 7 (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
149143, 146, 1483imtr4g 287 . . . . . 6 ((𝜑𝑓𝑋) → (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} → 𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓))))
150149ssrdv 3767 . . . . 5 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ ran (𝑔𝑋 dom (𝑔𝑓)))
151 ssnum 9113 . . . . 5 ((ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ ran (𝑔𝑋 dom (𝑔𝑓))) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ dom card)
15246, 150, 151syl2anc 579 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ dom card)
153 xpnum 9028 . . . 4 ((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ dom card) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ dom card)
15432, 152, 153syl2anc 579 . . 3 ((𝜑𝑓𝑋) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ dom card)
15583adantr 472 . . . . 5 ((𝜑𝑓𝑋) → 𝐴𝑉)
156 rabexg 4972 . . . . 5 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V)
157155, 156syl 17 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V)
158 fvex 6388 . . . . . . 7 (𝐹𝑘) ∈ V
159158uniex 7151 . . . . . 6 (𝐹𝑘) ∈ V
160159rgenw 3071 . . . . 5 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V
161 iunexg 7341 . . . . 5 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V)
162157, 160, 161sylancl 580 . . . 4 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V)
163 resixp 8148 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ 𝐴𝑓X𝑘𝐴 (𝐹𝑘)) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
16425, 50, 163sylancr 581 . . . . 5 ((𝜑𝑓𝑋) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
165164ne0d 4086 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≠ ∅)
166 ixpiunwdom 8703 . . . 4 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V ∧ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≠ ∅) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}))
167157, 162, 165, 166syl3anc 1490 . . 3 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}))
168 numwdom 9133 . . 3 (((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
169154, 167, 168syl2anc 579 . 2 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
17014, 169exlimddv 2030 1 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cdif 3729  cin 3731  wss 3732  c0 4079  ifcif 4243  𝒫 cpw 4315  {csn 4334   cuni 4594   ciun 4676   class class class wbr 4809  cmpt 4888   × cxp 5275  ccnv 5276  dom cdm 5277  ran crn 5278  cres 5279  cima 5280   Fn wfn 6063  wf 6064  ontowfo 6066  cfv 6068  cmpt2 6844  1𝑜c1o 7757  Xcixp 8113  cen 8157  Fincfn 8160  * cwdom 8669  cardccrd 9012  Compccmp 21469  UFLcufl 21983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-fin 8164  df-wdom 8671  df-card 9016  df-acn 9019
This theorem is referenced by:  ptcmplem3  22137
  Copyright terms: Public domain W3C validator