Step | Hyp | Ref
| Expression |
1 | | ptcmplem2.7 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
2 | | 0ss 4335 |
. . . . . . 7
⊢ ∅
⊆ 𝑈 |
3 | | 0fin 8919 |
. . . . . . 7
⊢ ∅
∈ Fin |
4 | | elfpw 9082 |
. . . . . . 7
⊢ (∅
∈ (𝒫 𝑈 ∩
Fin) ↔ (∅ ⊆ 𝑈 ∧ ∅ ∈ Fin)) |
5 | 2, 3, 4 | mpbir2an 707 |
. . . . . 6
⊢ ∅
∈ (𝒫 𝑈 ∩
Fin) |
6 | | unieq 4855 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∪ ∅) |
7 | | uni0 4874 |
. . . . . . . 8
⊢ ∪ ∅ = ∅ |
8 | 6, 7 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∅) |
9 | 8 | rspceeqv 3575 |
. . . . . 6
⊢ ((∅
∈ (𝒫 𝑈 ∩
Fin) ∧ 𝑋 = ∅)
→ ∃𝑧 ∈
(𝒫 𝑈 ∩
Fin)𝑋 = ∪ 𝑧) |
10 | 5, 9 | mpan 686 |
. . . . 5
⊢ (𝑋 = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
11 | 10 | necon3bi 2971 |
. . . 4
⊢ (¬
∃𝑧 ∈ (𝒫
𝑈 ∩ Fin)𝑋 = ∪
𝑧 → 𝑋 ≠ ∅) |
12 | 1, 11 | syl 17 |
. . 3
⊢ (𝜑 → 𝑋 ≠ ∅) |
13 | | n0 4285 |
. . 3
⊢ (𝑋 ≠ ∅ ↔
∃𝑓 𝑓 ∈ 𝑋) |
14 | 12, 13 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑓 𝑓 ∈ 𝑋) |
15 | | ptcmp.2 |
. . . . . . 7
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
16 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
17 | 16 | unieqd 4858 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑘)) |
18 | 17 | cbvixpv 8677 |
. . . . . . 7
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
19 | 15, 18 | eqtri 2767 |
. . . . . 6
⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
20 | | ptcmp.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom
card)) |
21 | 20 | elin2d 4137 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ dom card) |
22 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ∈ dom card) |
23 | 19, 22 | eqeltrrid 2845 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ dom card) |
24 | | ssrab2 4017 |
. . . . . 6
⊢ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ⊆ 𝐴 |
25 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ≠ ∅) |
26 | 19, 25 | eqnetrrid 3020 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ≠ ∅) |
27 | | eqid 2739 |
. . . . . . 7
⊢ (𝑔 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})) = (𝑔 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})) |
28 | 27 | resixpfo 8698 |
. . . . . 6
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ⊆ 𝐴 ∧ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ≠ ∅) → (𝑔 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})):X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)–onto→X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) |
29 | 24, 26, 28 | sylancr 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})):X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)–onto→X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) |
30 | | fonum 9798 |
. . . . 5
⊢ ((X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ∈ dom card ∧ (𝑔 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})):X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)–onto→X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) |
31 | 23, 29, 30 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) |
32 | | vex 3434 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
33 | | difexg 5254 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ V → (𝑔 ∖ 𝑓) ∈ V) |
34 | 32, 33 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∖ 𝑓) ∈ V) |
35 | | dmexg 7737 |
. . . . . . . . . 10
⊢ ((𝑔 ∖ 𝑓) ∈ V → dom (𝑔 ∖ 𝑓) ∈ V) |
36 | | uniexg 7584 |
. . . . . . . . . 10
⊢ (dom
(𝑔 ∖ 𝑓) ∈ V → ∪ dom (𝑔 ∖ 𝑓) ∈ V) |
37 | 34, 35, 36 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪ dom
(𝑔 ∖ 𝑓) ∈ V) |
38 | 37 | ralrimivw 3110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∀𝑔 ∈ 𝑋 ∪ dom (𝑔 ∖ 𝑓) ∈ V) |
39 | | eqid 2739 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) = (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) |
40 | 39 | fnmpt 6569 |
. . . . . . . 8
⊢
(∀𝑔 ∈
𝑋 ∪ dom (𝑔 ∖ 𝑓) ∈ V → (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) Fn 𝑋) |
41 | 38, 40 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) Fn 𝑋) |
42 | | dffn4 6690 |
. . . . . . 7
⊢ ((𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) Fn 𝑋 ↔ (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)):𝑋–onto→ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) |
43 | 41, 42 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)):𝑋–onto→ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) |
44 | | fonum 9798 |
. . . . . 6
⊢ ((𝑋 ∈ dom card ∧ (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)):𝑋–onto→ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) → ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ∈ dom
card) |
45 | 22, 43, 44 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ∈ dom
card) |
46 | | ssdif0 4302 |
. . . . . . . . . . . 12
⊢ (∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)} ↔ (∪
(𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅) |
47 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → ∪
(𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) |
48 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ 𝑋) |
49 | 48, 19 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
50 | | vex 3434 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑓 ∈ V |
51 | 50 | elixp 8666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
52 | 51 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
53 | 49, 52 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
54 | 53 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
55 | 54 | snssd 4747 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → {(𝑓‘𝑘)} ⊆ ∪
(𝐹‘𝑘)) |
56 | 55 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → {(𝑓‘𝑘)} ⊆ ∪
(𝐹‘𝑘)) |
57 | 47, 56 | eqssd 3942 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → ∪
(𝐹‘𝑘) = {(𝑓‘𝑘)}) |
58 | | fvex 6781 |
. . . . . . . . . . . . . . 15
⊢ (𝑓‘𝑘) ∈ V |
59 | 58 | ensn1 8777 |
. . . . . . . . . . . . . 14
⊢ {(𝑓‘𝑘)} ≈ 1o |
60 | 57, 59 | eqbrtrdi 5117 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → ∪
(𝐹‘𝑘) ≈ 1o) |
61 | 60 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (∪
(𝐹‘𝑘) ⊆ {(𝑓‘𝑘)} → ∪ (𝐹‘𝑘) ≈ 1o)) |
62 | 46, 61 | syl5bir 242 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ((∪
(𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅ → ∪ (𝐹‘𝑘) ≈ 1o)) |
63 | 62 | con3d 152 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (¬ ∪
(𝐹‘𝑘) ≈ 1o → ¬ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅)) |
64 | | neq0 4284 |
. . . . . . . . . 10
⊢ (¬
(∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅ ↔ ∃𝑥 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) |
65 | 63, 64 | syl6ib 250 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (¬ ∪
(𝐹‘𝑘) ≈ 1o → ∃𝑥 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}))) |
66 | | eldifi 4065 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → 𝑥 ∈ ∪ (𝐹‘𝑘)) |
67 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → 𝑥 ∈ ∪ (𝐹‘𝑘)) |
68 | | iftrue 4470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) = 𝑥) |
69 | 68, 17 | eleq12d 2834 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛) ↔ 𝑥 ∈ ∪ (𝐹‘𝑘))) |
70 | 67, 69 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
71 | 48, 15 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
72 | 50 | elixp 8666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛))) |
73 | 72 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
74 | 71, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
75 | 74 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
76 | 75 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
77 | | iffalse 4473 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) = (𝑓‘𝑛)) |
78 | 77 | eleq1d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛) ↔ (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛))) |
79 | 76, 78 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → (¬ 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
80 | 70, 79 | pm2.61d 179 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛)) |
81 | 80 | ralrimiva 3109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → ∀𝑛 ∈ 𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛)) |
82 | | ptcmp.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
83 | 82 | ad3antrrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → 𝐴 ∈ 𝑉) |
84 | | mptelixpg 8697 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
86 | 81, 85 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
87 | 86, 15 | eleqtrrdi 2851 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ 𝑋) |
88 | 66, 87 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ 𝑋) |
89 | | vex 3434 |
. . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V |
90 | 89 | unisn 4866 |
. . . . . . . . . . . . 13
⊢ ∪ {𝑘}
= 𝑘 |
91 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → 𝑘 ∈ 𝐴) |
92 | | eleq1w 2822 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑘 → (𝑚 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
93 | 91, 92 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑚 = 𝑘 → 𝑚 ∈ 𝐴)) |
94 | 93 | pm4.71rd 562 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚 ∈ 𝐴 ∧ 𝑚 = 𝑘))) |
95 | | equequ1 2031 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑛 = 𝑘 ↔ 𝑚 = 𝑘)) |
96 | | fveq2 6768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
97 | 95, 96 | ifbieq2d 4490 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) = if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚))) |
98 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) |
99 | | vex 3434 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑥 ∈ V |
100 | | fvex 6781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓‘𝑚) ∈ V |
101 | 99, 100 | ifex 4514 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ∈ V |
102 | 97, 98, 101 | fvmpt 6869 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ 𝐴 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) = if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚))) |
103 | 102 | neeq1d 3004 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ 𝐴 → (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚))) |
104 | 103 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚))) |
105 | | iffalse 4473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) = (𝑓‘𝑚)) |
106 | 105 | necon1ai 2972 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚) → 𝑚 = 𝑘) |
107 | | eldifsni 4728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → 𝑥 ≠ (𝑓‘𝑘)) |
108 | 107 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → 𝑥 ≠ (𝑓‘𝑘)) |
109 | | iftrue 4470 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) = 𝑥) |
110 | | fveq2 6768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → (𝑓‘𝑚) = (𝑓‘𝑘)) |
111 | 109, 110 | neeq12d 3006 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑘 → (if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚) ↔ 𝑥 ≠ (𝑓‘𝑘))) |
112 | 108, 111 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚))) |
113 | 106, 112 | impbid2 225 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚) ↔ 𝑚 = 𝑘)) |
114 | 104, 113 | bitrd 278 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚) ↔ 𝑚 = 𝑘)) |
115 | 114 | pm5.32da 578 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → ((𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)) ↔ (𝑚 ∈ 𝐴 ∧ 𝑚 = 𝑘))) |
116 | 94, 115 | bitr4d 281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)))) |
117 | 116 | abbidv 2808 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → {𝑚 ∣ 𝑚 = 𝑘} = {𝑚 ∣ (𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚))}) |
118 | | df-sn 4567 |
. . . . . . . . . . . . . . . 16
⊢ {𝑘} = {𝑚 ∣ 𝑚 = 𝑘} |
119 | | df-rab 3074 |
. . . . . . . . . . . . . . . 16
⊢ {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)} = {𝑚 ∣ (𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚))} |
120 | 117, 118,
119 | 3eqtr4g 2804 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → {𝑘} = {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)}) |
121 | | fvex 6781 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘𝑛) ∈ V |
122 | 99, 121 | ifex 4514 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ V |
123 | 122 | rgenw 3077 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑛 ∈
𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ V |
124 | 98 | fnmpt 6569 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑛 ∈
𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ V → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) Fn 𝐴) |
125 | 123, 124 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) Fn 𝐴) |
126 | | ixpfn 8665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) → 𝑓 Fn 𝐴) |
127 | 71, 126 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 Fn 𝐴) |
128 | 127 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → 𝑓 Fn 𝐴) |
129 | | fndmdif 6913 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) Fn 𝐴 ∧ 𝑓 Fn 𝐴) → dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓) = {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)}) |
130 | 125, 128,
129 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓) = {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)}) |
131 | 120, 130 | eqtr4d 2782 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → {𝑘} = dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
132 | 131 | unieqd 4858 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → ∪
{𝑘} = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
133 | 90, 132 | eqtr3id 2793 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → 𝑘 = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
134 | | difeq1 4054 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → (𝑔 ∖ 𝑓) = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
135 | 134 | dmeqd 5811 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → dom (𝑔 ∖ 𝑓) = dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
136 | 135 | unieqd 4858 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → ∪ dom
(𝑔 ∖ 𝑓) = ∪
dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
137 | 136 | rspceeqv 3575 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ 𝑋 ∧ 𝑘 = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓)) |
138 | 88, 133, 137 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓)) |
139 | 138 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
140 | 139 | exlimdv 1939 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (∃𝑥 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
141 | 65, 140 | syld 47 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (¬ ∪
(𝐹‘𝑘) ≈ 1o → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
142 | 141 | expimpd 453 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ((𝑘 ∈ 𝐴 ∧ ¬ ∪
(𝐹‘𝑘) ≈ 1o) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
143 | 17 | breq1d 5088 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∪ (𝐹‘𝑛) ≈ 1o ↔ ∪ (𝐹‘𝑘) ≈ 1o)) |
144 | 143 | notbid 317 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (¬ ∪
(𝐹‘𝑛) ≈ 1o ↔ ¬ ∪ (𝐹‘𝑘) ≈ 1o)) |
145 | 144 | elrab 3625 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ↔ (𝑘 ∈ 𝐴 ∧ ¬ ∪
(𝐹‘𝑘) ≈ 1o)) |
146 | 39 | elrnmpt 5862 |
. . . . . . . 8
⊢ (𝑘 ∈ V → (𝑘 ∈ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ↔ ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
147 | 146 | elv 3436 |
. . . . . . 7
⊢ (𝑘 ∈ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ↔ ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓)) |
148 | 142, 145,
147 | 3imtr4g 295 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} → 𝑘 ∈ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)))) |
149 | 148 | ssrdv 3931 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ⊆ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) |
150 | | ssnum 9779 |
. . . . 5
⊢ ((ran
(𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ∈ dom card ∧ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ⊆ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈ dom
card) |
151 | 45, 149, 150 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈ dom
card) |
152 | | xpnum 9693 |
. . . 4
⊢ ((X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card ∧ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈ dom card)
→ (X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}) ∈ dom
card) |
153 | 31, 151, 152 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}) ∈ dom
card) |
154 | 82 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝐴 ∈ 𝑉) |
155 | | rabexg 5258 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈
V) |
156 | 154, 155 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈
V) |
157 | | fvex 6781 |
. . . . . . 7
⊢ (𝐹‘𝑘) ∈ V |
158 | 157 | uniex 7585 |
. . . . . 6
⊢ ∪ (𝐹‘𝑘) ∈ V |
159 | 158 | rgenw 3077 |
. . . . 5
⊢
∀𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ V |
160 | | iunexg 7792 |
. . . . 5
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈ V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ V) → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ V) |
161 | 156, 159,
160 | sylancl 585 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ V) |
162 | | resixp 8695 |
. . . . . 6
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ⊆ 𝐴 ∧ 𝑓 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) → (𝑓 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}) ∈ X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) |
163 | 24, 49, 162 | sylancr 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑓 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}) ∈ X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) |
164 | 163 | ne0d 4274 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ≠ ∅) |
165 | | ixpiunwdom 9310 |
. . . 4
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈ V ∧
∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ V ∧ X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ≠ ∅) → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ≼* (X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})) |
166 | 156, 161,
164, 165 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ≼* (X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})) |
167 | | numwdom 9799 |
. . 3
⊢ (((X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}) ∈ dom card
∧ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ≼* (X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o})) → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) |
168 | 153, 166,
167 | syl2anc 583 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) |
169 | 14, 168 | exlimddv 1941 |
1
⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) |