| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | neeqtrd 3001 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 |
| This theorem is referenced by: 3netr4d 3009 ttukeylem7 10529 modsumfzodifsn 13962 expnprm 16922 symgextf1lem 19401 isabvd 20772 flimclslem 23922 chordthmlem 26794 atandmtan 26882 dchrptlem3 27229 noetasuplem4 27700 opphllem6 28731 nrt2irr 30454 unidifsnne 32517 pmtrcnel 33100 pmtrcnel2 33101 cycpmrn 33154 qsdrnglem2 33511 fedgmul 33671 irngnzply1 33732 minplyelirng 33749 irredminply 33750 signstfveq0a 34608 subfacp1lem5 35206 ovoliunnfl 37686 voliunnfl 37688 volsupnfl 37689 cdleme40n 40487 cdleme40w 40489 cdlemg33c 40727 cdlemg33e 40729 trlcocnvat 40743 cdlemh2 40835 cdlemh 40836 cdlemj3 40842 cdlemk24-3 40922 cdlemkfid1N 40940 erng1r 41014 dvalveclem 41044 tendoinvcl 41123 tendolinv 41124 tendorinv 41125 dihatlat 41353 mapdpglem18 41708 mapdpglem22 41712 baerlem5amN 41735 baerlem5bmN 41736 baerlem5abmN 41737 mapdindp1 41739 mapdindp4 41742 hdmap14lem4a 41890 uvcn0 42565 prjspner1 42649 nlimsuc 43465 imo72b2lem2 44191 imo72b2 44196 gpg5nbgrvtx03starlem2 48071 gpg5nbgrvtx13starlem2 48074 islindeps2 48459 fucofvalne 49236 |
| Copyright terms: Public domain | W3C validator |