![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2731 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | neeqtrd 2999 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ≠ wne 2929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2717 df-ne 2930 |
This theorem is referenced by: 3netr4d 3007 ttukeylem7 10540 modsumfzodifsn 13945 expnprm 16874 symgextf1lem 19387 isabvd 20712 flimclslem 23932 chordthmlem 26809 atandmtan 26897 dchrptlem3 27244 noetasuplem4 27715 opphllem6 28628 nrt2irr 30355 unidifsnne 32411 pmtrcnel 32902 pmtrcnel2 32903 cycpmrn 32956 qsdrnglem2 33308 fedgmul 33460 irngnzply1 33500 irredminply 33515 signstfveq0a 34339 subfacp1lem5 34925 ovoliunnfl 37266 voliunnfl 37268 volsupnfl 37269 cdleme40n 40071 cdleme40w 40073 cdlemg33c 40311 cdlemg33e 40313 trlcocnvat 40327 cdlemh2 40419 cdlemh 40420 cdlemj3 40426 cdlemk24-3 40506 cdlemkfid1N 40524 erng1r 40598 dvalveclem 40628 tendoinvcl 40707 tendolinv 40708 tendorinv 40709 dihatlat 40937 mapdpglem18 41292 mapdpglem22 41296 baerlem5amN 41319 baerlem5bmN 41320 baerlem5abmN 41321 mapdindp1 41323 mapdindp4 41326 hdmap14lem4a 41474 uvcn0 41910 prjspner1 42185 nlimsuc 43013 imo72b2lem0 43737 imo72b2lem2 43739 imo72b2 43744 islindeps2 47737 |
Copyright terms: Public domain | W3C validator |