| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | neeqtrd 2994 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: 3netr4d 3002 ttukeylem7 10444 modsumfzodifsn 13885 expnprm 16849 symgextf1lem 19334 isabvd 20732 flimclslem 23904 chordthmlem 26775 atandmtan 26863 dchrptlem3 27210 noetasuplem4 27681 opphllem6 28732 nrt2irr 30452 unidifsnne 32515 pmtrcnel 33061 pmtrcnel2 33062 cycpmrn 33115 qsdrnglem2 33460 fedgmul 33620 irngnzply1 33679 minplyelirng 33698 irredminply 33699 signstfveq0a 34560 subfacp1lem5 35164 ovoliunnfl 37649 voliunnfl 37651 volsupnfl 37652 cdleme40n 40455 cdleme40w 40457 cdlemg33c 40695 cdlemg33e 40697 trlcocnvat 40711 cdlemh2 40803 cdlemh 40804 cdlemj3 40810 cdlemk24-3 40890 cdlemkfid1N 40908 erng1r 40982 dvalveclem 41012 tendoinvcl 41091 tendolinv 41092 tendorinv 41093 dihatlat 41321 mapdpglem18 41676 mapdpglem22 41680 baerlem5amN 41703 baerlem5bmN 41704 baerlem5abmN 41705 mapdindp1 41707 mapdindp4 41710 hdmap14lem4a 41858 uvcn0 42523 prjspner1 42607 nlimsuc 43423 imo72b2lem2 44149 imo72b2 44154 gpg5nbgrvtx03starlem2 48053 gpg5nbgrvtx13starlem2 48056 islindeps2 48465 fucofvalne 49307 |
| Copyright terms: Public domain | W3C validator |