![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | neeqtrd 3016 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: 3netr4d 3024 ttukeylem7 10584 modsumfzodifsn 13995 expnprm 16949 symgextf1lem 19462 isabvd 20835 flimclslem 24013 chordthmlem 26893 atandmtan 26981 dchrptlem3 27328 noetasuplem4 27799 opphllem6 28778 nrt2irr 30505 unidifsnne 32564 pmtrcnel 33082 pmtrcnel2 33083 cycpmrn 33136 qsdrnglem2 33489 fedgmul 33644 irngnzply1 33691 irredminply 33707 signstfveq0a 34553 subfacp1lem5 35152 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 cdleme40n 40425 cdleme40w 40427 cdlemg33c 40665 cdlemg33e 40667 trlcocnvat 40681 cdlemh2 40773 cdlemh 40774 cdlemj3 40780 cdlemk24-3 40860 cdlemkfid1N 40878 erng1r 40952 dvalveclem 40982 tendoinvcl 41061 tendolinv 41062 tendorinv 41063 dihatlat 41291 mapdpglem18 41646 mapdpglem22 41650 baerlem5amN 41673 baerlem5bmN 41674 baerlem5abmN 41675 mapdindp1 41677 mapdindp4 41680 hdmap14lem4a 41828 uvcn0 42497 prjspner1 42581 nlimsuc 43403 imo72b2lem0 44127 imo72b2lem2 44129 imo72b2 44134 islindeps2 48212 |
Copyright terms: Public domain | W3C validator |