Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | neeqtrd 3015 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 df-ne 2946 |
This theorem is referenced by: 3netr4d 3023 ttukeylem7 10272 modsumfzodifsn 13662 expnprm 16601 symgextf1lem 19026 isabvd 20078 flimclslem 23133 chordthmlem 25980 atandmtan 26068 dchrptlem3 26412 opphllem6 27111 unidifsnne 30880 pmtrcnel 31354 pmtrcnel2 31355 cycpmrn 31406 fedgmul 31708 signstfveq0a 32551 subfacp1lem5 33142 noetasuplem4 33935 ovoliunnfl 35815 voliunnfl 35817 volsupnfl 35818 cdleme40n 38478 cdleme40w 38480 cdlemg33c 38718 cdlemg33e 38720 trlcocnvat 38734 cdlemh2 38826 cdlemh 38827 cdlemj3 38833 cdlemk24-3 38913 cdlemkfid1N 38931 erng1r 39005 dvalveclem 39035 tendoinvcl 39114 tendolinv 39115 tendorinv 39116 dihatlat 39344 mapdpglem18 39699 mapdpglem22 39703 baerlem5amN 39726 baerlem5bmN 39727 baerlem5abmN 39728 mapdindp1 39730 mapdindp4 39733 hdmap14lem4a 39881 uvcn0 40262 prjspner1 40460 imo72b2lem0 41746 imo72b2lem2 41748 imo72b2 41753 islindeps2 45793 |
Copyright terms: Public domain | W3C validator |