Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | neeqtrd 3012 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: 3netr4d 3020 ttukeylem7 10202 modsumfzodifsn 13592 expnprm 16531 symgextf1lem 18943 isabvd 19995 flimclslem 23043 chordthmlem 25887 atandmtan 25975 dchrptlem3 26319 opphllem6 27017 unidifsnne 30785 pmtrcnel 31260 pmtrcnel2 31261 cycpmrn 31312 fedgmul 31614 signstfveq0a 32455 subfacp1lem5 33046 noetasuplem4 33866 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 cdleme40n 38409 cdleme40w 38411 cdlemg33c 38649 cdlemg33e 38651 trlcocnvat 38665 cdlemh2 38757 cdlemh 38758 cdlemj3 38764 cdlemk24-3 38844 cdlemkfid1N 38862 erng1r 38936 dvalveclem 38966 tendoinvcl 39045 tendolinv 39046 tendorinv 39047 dihatlat 39275 mapdpglem18 39630 mapdpglem22 39634 baerlem5amN 39657 baerlem5bmN 39658 baerlem5abmN 39659 mapdindp1 39661 mapdindp4 39664 hdmap14lem4a 39812 uvcn0 40190 prjspner1 40384 imo72b2lem0 41665 imo72b2lem2 41667 imo72b2 41672 islindeps2 45712 |
Copyright terms: Public domain | W3C validator |