Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | neeqtrd 3013 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: 3netr4d 3021 ttukeylem7 10271 modsumfzodifsn 13664 expnprm 16603 symgextf1lem 19028 isabvd 20080 flimclslem 23135 chordthmlem 25982 atandmtan 26070 dchrptlem3 26414 opphllem6 27113 unidifsnne 30884 pmtrcnel 31358 pmtrcnel2 31359 cycpmrn 31410 fedgmul 31712 signstfveq0a 32555 subfacp1lem5 33146 noetasuplem4 33939 ovoliunnfl 35819 voliunnfl 35821 volsupnfl 35822 cdleme40n 38482 cdleme40w 38484 cdlemg33c 38722 cdlemg33e 38724 trlcocnvat 38738 cdlemh2 38830 cdlemh 38831 cdlemj3 38837 cdlemk24-3 38917 cdlemkfid1N 38935 erng1r 39009 dvalveclem 39039 tendoinvcl 39118 tendolinv 39119 tendorinv 39120 dihatlat 39348 mapdpglem18 39703 mapdpglem22 39707 baerlem5amN 39730 baerlem5bmN 39731 baerlem5abmN 39732 mapdindp1 39734 mapdindp4 39737 hdmap14lem4a 39885 uvcn0 40265 prjspner1 40463 nlimsuc 41048 imo72b2lem0 41776 imo72b2lem2 41778 imo72b2 41783 islindeps2 45824 |
Copyright terms: Public domain | W3C validator |