| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | neeqtrd 2995 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: 3netr4d 3003 ttukeylem7 10475 modsumfzodifsn 13916 expnprm 16880 symgextf1lem 19357 isabvd 20728 flimclslem 23878 chordthmlem 26749 atandmtan 26837 dchrptlem3 27184 noetasuplem4 27655 opphllem6 28686 nrt2irr 30409 unidifsnne 32472 pmtrcnel 33053 pmtrcnel2 33054 cycpmrn 33107 qsdrnglem2 33474 fedgmul 33634 irngnzply1 33693 minplyelirng 33712 irredminply 33713 signstfveq0a 34574 subfacp1lem5 35178 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 cdleme40n 40469 cdleme40w 40471 cdlemg33c 40709 cdlemg33e 40711 trlcocnvat 40725 cdlemh2 40817 cdlemh 40818 cdlemj3 40824 cdlemk24-3 40904 cdlemkfid1N 40922 erng1r 40996 dvalveclem 41026 tendoinvcl 41105 tendolinv 41106 tendorinv 41107 dihatlat 41335 mapdpglem18 41690 mapdpglem22 41694 baerlem5amN 41717 baerlem5bmN 41718 baerlem5abmN 41719 mapdindp1 41721 mapdindp4 41724 hdmap14lem4a 41872 uvcn0 42537 prjspner1 42621 nlimsuc 43437 imo72b2lem2 44163 imo72b2 44168 gpg5nbgrvtx03starlem2 48064 gpg5nbgrvtx13starlem2 48067 islindeps2 48476 fucofvalne 49318 |
| Copyright terms: Public domain | W3C validator |