| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | neeqtrd 2994 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: 3netr4d 3002 ttukeylem7 10468 modsumfzodifsn 13909 expnprm 16873 symgextf1lem 19350 isabvd 20721 flimclslem 23871 chordthmlem 26742 atandmtan 26830 dchrptlem3 27177 noetasuplem4 27648 opphllem6 28679 nrt2irr 30402 unidifsnne 32465 pmtrcnel 33046 pmtrcnel2 33047 cycpmrn 33100 qsdrnglem2 33467 fedgmul 33627 irngnzply1 33686 minplyelirng 33705 irredminply 33706 signstfveq0a 34567 subfacp1lem5 35171 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 cdleme40n 40462 cdleme40w 40464 cdlemg33c 40702 cdlemg33e 40704 trlcocnvat 40718 cdlemh2 40810 cdlemh 40811 cdlemj3 40817 cdlemk24-3 40897 cdlemkfid1N 40915 erng1r 40989 dvalveclem 41019 tendoinvcl 41098 tendolinv 41099 tendorinv 41100 dihatlat 41328 mapdpglem18 41683 mapdpglem22 41687 baerlem5amN 41710 baerlem5bmN 41711 baerlem5abmN 41712 mapdindp1 41714 mapdindp4 41717 hdmap14lem4a 41865 uvcn0 42530 prjspner1 42614 nlimsuc 43430 imo72b2lem2 44156 imo72b2 44161 gpg5nbgrvtx03starlem2 48060 gpg5nbgrvtx13starlem2 48063 islindeps2 48472 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |