| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | neeqtrd 2997 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: 3netr4d 3005 ttukeylem7 10406 modsumfzodifsn 13851 expnprm 16814 symgextf1lem 19332 isabvd 20727 flimclslem 23899 chordthmlem 26769 atandmtan 26857 dchrptlem3 27204 noetasuplem4 27675 opphllem6 28730 nrt2irr 30453 unidifsnne 32516 pmtrcnel 33058 pmtrcnel2 33059 cycpmrn 33112 qsdrnglem2 33461 fedgmul 33644 irngnzply1 33704 minplyelirng 33728 irredminply 33729 signstfveq0a 34589 subfacp1lem5 35228 ovoliunnfl 37712 voliunnfl 37714 volsupnfl 37715 cdleme40n 40577 cdleme40w 40579 cdlemg33c 40817 cdlemg33e 40819 trlcocnvat 40833 cdlemh2 40925 cdlemh 40926 cdlemj3 40932 cdlemk24-3 41012 cdlemkfid1N 41030 erng1r 41104 dvalveclem 41134 tendoinvcl 41213 tendolinv 41214 tendorinv 41215 dihatlat 41443 mapdpglem18 41798 mapdpglem22 41802 baerlem5amN 41825 baerlem5bmN 41826 baerlem5abmN 41827 mapdindp1 41829 mapdindp4 41832 hdmap14lem4a 41980 uvcn0 42645 prjspner1 42729 nlimsuc 43544 imo72b2lem2 44270 imo72b2 44275 gpg5nbgrvtx03starlem2 48179 gpg5nbgrvtx13starlem2 48182 islindeps2 48594 fucofvalne 49436 |
| Copyright terms: Public domain | W3C validator |