| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| neeqtrrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | neeqtrd 2994 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: 3netr4d 3002 ttukeylem7 10409 modsumfzodifsn 13851 expnprm 16814 symgextf1lem 19299 isabvd 20697 flimclslem 23869 chordthmlem 26740 atandmtan 26828 dchrptlem3 27175 noetasuplem4 27646 opphllem6 28697 nrt2irr 30417 unidifsnne 32480 pmtrcnel 33031 pmtrcnel2 33032 cycpmrn 33085 qsdrnglem2 33433 fedgmul 33598 irngnzply1 33658 minplyelirng 33682 irredminply 33683 signstfveq0a 34544 subfacp1lem5 35161 ovoliunnfl 37646 voliunnfl 37648 volsupnfl 37649 cdleme40n 40451 cdleme40w 40453 cdlemg33c 40691 cdlemg33e 40693 trlcocnvat 40707 cdlemh2 40799 cdlemh 40800 cdlemj3 40806 cdlemk24-3 40886 cdlemkfid1N 40904 erng1r 40978 dvalveclem 41008 tendoinvcl 41087 tendolinv 41088 tendorinv 41089 dihatlat 41317 mapdpglem18 41672 mapdpglem22 41676 baerlem5amN 41699 baerlem5bmN 41700 baerlem5abmN 41701 mapdindp1 41703 mapdindp4 41706 hdmap14lem4a 41854 uvcn0 42519 prjspner1 42603 nlimsuc 43418 imo72b2lem2 44144 imo72b2 44149 gpg5nbgrvtx03starlem2 48057 gpg5nbgrvtx13starlem2 48060 islindeps2 48472 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |