Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfnn Structured version   Visualization version   GIF version

Theorem signsvfnn 31755
Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfnn ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfnn
StepHypRef Expression
1 signsvf.e . . . . . . . . 9 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
21adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐸 ∈ (Word ℝ ∖ {∅}))
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
41eldifad 3945 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ Word ℝ)
5 wrdf 13854 . . . . . . . . . . . . . . 15 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
7 signsvf.n . . . . . . . . . . . . . . . 16 𝑁 = (♯‘𝐸)
87oveq1i 7155 . . . . . . . . . . . . . . 15 (𝑁 − 1) = ((♯‘𝐸) − 1)
9 eldifsn 4711 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
101, 9sylib 219 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
11 lennncl 13872 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
12 fzo0end 13117 . . . . . . . . . . . . . . . 16 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1310, 11, 123syl 18 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
148, 13eqeltrid 2914 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
156, 14ffvelrnd 6844 . . . . . . . . . . . . 13 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1615recnd 10657 . . . . . . . . . . . 12 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
173, 16eqeltrid 2914 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1817adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℂ)
19 signsvf.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
2019recnd 10657 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2120adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℂ)
22 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) < 0)
2322lt0ne0d 11193 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) ≠ 0)
2418, 21, 23mulne0bad 11283 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ≠ 0)
253, 24eqnetrrid 3088 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐸‘(𝑁 − 1)) ≠ 0)
26 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
27 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
28 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
29 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3026, 27, 28, 29, 7signsvtn0 31739 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
313fveq2i 6666 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3230, 31syl6eqr 2871 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
332, 25, 32syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
3433fveq2d 6667 . . . . . 6 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
353, 15eqeltrid 2914 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
3635adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ)
3736rexrd 10679 . . . . . . 7 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ*)
38 sgnsgn 31705 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
3937, 38syl 17 . . . . . 6 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4034, 39eqtrd 2853 . . . . 5 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4140oveq2d 7161 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4220, 17mulcomd 10650 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342breq1d 5067 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
44 sgnmulsgn 31706 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4519, 35, 44syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4643, 45bitr3d 282 . . . . 5 (𝜑 → ((𝐵 · 𝐴) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4746biimpa 477 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘𝐵)) < 0)
4841, 47eqbrtrd 5079 . . 3 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0)
4919adantr 481 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℝ)
50 sgnclre 31696 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5136, 50syl 17 . . . . 5 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘𝐵) ∈ ℝ)
5233, 51eqeltrd 2910 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgn 31706 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → ((𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0 ↔ ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0))
5449, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0 ↔ ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0))
5548, 54mpbird 258 . 2 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0)
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2818 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5926, 27, 28, 29, 1, 56, 57, 19, 7, 58signsvtn 31753 . 2 ((𝜑 ∧ (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
6055, 59syldan 591 1 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  cdif 3930  c0 4288  ifcif 4463  {csn 4557  {cpr 4559  {ctp 4561  cop 4563   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530  *cxr 10662   < clt 10663  cmin 10858  -cneg 10859  cn 11626  ...cfz 12880  ..^cfzo 13021  chash 13678  Word cword 13849   ++ cconcat 13910  ⟨“cs1 13937  sgncsgn 14433  Σcsu 15030  ndxcnx 16468  Basecbs 16471  +gcplusg 16553   Σg cgsu 16702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-lsw 13903  df-concat 13911  df-s1 13938  df-substr 13991  df-pfx 14021  df-sgn 14434  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mulg 18163  df-cntz 18385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator