Proof of Theorem signsvfnn
Step | Hyp | Ref
| Expression |
1 | | signsvf.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (Word ℝ ∖
{∅})) |
2 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐸 ∈ (Word ℝ ∖
{∅})) |
3 | | signsvf.b |
. . . . . . . . 9
⊢ 𝐵 = (𝐸‘(𝑁 − 1)) |
4 | 1 | eldifad 3895 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ∈ Word ℝ) |
5 | | wrdf 14150 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 ∈ Word ℝ →
𝐸:(0..^(♯‘𝐸))⟶ℝ) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))⟶ℝ) |
7 | | signsvf.n |
. . . . . . . . . . . . . . . 16
⊢ 𝑁 = (♯‘𝐸) |
8 | 7 | oveq1i 7265 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 − 1) =
((♯‘𝐸) −
1) |
9 | | eldifsn 4717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸 ∈ (Word ℝ ∖
{∅}) ↔ (𝐸 ∈
Word ℝ ∧ 𝐸 ≠
∅)) |
10 | 1, 9 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅)) |
11 | | lennncl 14165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) →
(♯‘𝐸) ∈
ℕ) |
12 | | fzo0end 13407 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐸)
∈ ℕ → ((♯‘𝐸) − 1) ∈
(0..^(♯‘𝐸))) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝐸) − 1) ∈
(0..^(♯‘𝐸))) |
14 | 8, 13 | eqeltrid 2843 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸))) |
15 | 6, 14 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸‘(𝑁 − 1)) ∈
ℝ) |
16 | 15 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘(𝑁 − 1)) ∈
ℂ) |
17 | 3, 16 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℂ) |
19 | | signsvf.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℝ) |
20 | 19 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℂ) |
22 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) < 0) |
23 | 22 | lt0ne0d 11470 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) ≠ 0) |
24 | 18, 21, 23 | mulne0bad 11560 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ≠ 0) |
25 | 3, 24 | eqnetrrid 3018 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐸‘(𝑁 − 1)) ≠ 0) |
26 | | signsv.p |
. . . . . . . . . 10
⊢ ⨣ =
(𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦
if(𝑏 = 0, 𝑎, 𝑏)) |
27 | | signsv.w |
. . . . . . . . . 10
⊢ 𝑊 = {〈(Base‘ndx), {-1,
0, 1}〉, 〈(+g‘ndx), ⨣
〉} |
28 | | signsv.t |
. . . . . . . . . 10
⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈
(0..^(♯‘𝑓))
↦ (𝑊
Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
29 | | signsv.v |
. . . . . . . . . 10
⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈
(1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
30 | 26, 27, 28, 29, 7 | signsvtn0 32449 |
. . . . . . . . 9
⊢ ((𝐸 ∈ (Word ℝ ∖
{∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇‘𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1)))) |
31 | 3 | fveq2i 6759 |
. . . . . . . . 9
⊢
(sgn‘𝐵) =
(sgn‘(𝐸‘(𝑁 − 1))) |
32 | 30, 31 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝐸 ∈ (Word ℝ ∖
{∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇‘𝐸)‘(𝑁 − 1)) = (sgn‘𝐵)) |
33 | 2, 25, 32 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇‘𝐸)‘(𝑁 − 1)) = (sgn‘𝐵)) |
34 | 33 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇‘𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵))) |
35 | 3, 15 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ) |
37 | 36 | rexrd 10956 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈
ℝ*) |
38 | | sgnsgn 32415 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ (sgn‘(sgn‘𝐵)) = (sgn‘𝐵)) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵)) |
40 | 34, 39 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇‘𝐸)‘(𝑁 − 1))) = (sgn‘𝐵)) |
41 | 40 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵))) |
42 | 20, 17 | mulcomd 10927 |
. . . . . . 7
⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
43 | 42 | breq1d 5080 |
. . . . . 6
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0)) |
44 | | sgnmulsgn 32416 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) |
45 | 19, 35, 44 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) |
46 | 43, 45 | bitr3d 280 |
. . . . 5
⊢ (𝜑 → ((𝐵 · 𝐴) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0)) |
47 | 46 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘𝐵)) < 0) |
48 | 41, 47 | eqbrtrd 5092 |
. . 3
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))) < 0) |
49 | 19 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℝ) |
50 | | sgnclre 32406 |
. . . . . 6
⊢ (𝐵 ∈ ℝ →
(sgn‘𝐵) ∈
ℝ) |
51 | 36, 50 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘𝐵) ∈
ℝ) |
52 | 33, 51 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇‘𝐸)‘(𝑁 − 1)) ∈
ℝ) |
53 | | sgnmulsgn 32416 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ((𝑇‘𝐸)‘(𝑁 − 1)) ∈ ℝ) → ((𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1))) < 0 ↔
((sgn‘𝐴) ·
(sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))) < 0)) |
54 | 49, 52, 53 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1))) < 0 ↔
((sgn‘𝐴) ·
(sgn‘((𝑇‘𝐸)‘(𝑁 − 1)))) < 0)) |
55 | 48, 54 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1))) < 0) |
56 | | signsvf.0 |
. . 3
⊢ (𝜑 → (𝐸‘0) ≠ 0) |
57 | | signsvf.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝐸 ++ 〈“𝐴”〉)) |
58 | | eqid 2738 |
. . 3
⊢ ((𝑇‘𝐸)‘(𝑁 − 1)) = ((𝑇‘𝐸)‘(𝑁 − 1)) |
59 | 26, 27, 28, 29, 1, 56, 57, 19, 7, 58 | signsvtn 32463 |
. 2
⊢ ((𝜑 ∧ (𝐴 · ((𝑇‘𝐸)‘(𝑁 − 1))) < 0) → ((𝑉‘𝐹) − (𝑉‘𝐸)) = 1) |
60 | 55, 59 | syldan 590 |
1
⊢ ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉‘𝐹) − (𝑉‘𝐸)) = 1) |