Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfnn Structured version   Visualization version   GIF version

Theorem signsvfnn 34550
Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfnn ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfnn
StepHypRef Expression
1 signsvf.e . . . . . . . . 9 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
21adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐸 ∈ (Word ℝ ∖ {∅}))
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
41eldifad 3923 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ Word ℝ)
5 wrdf 14459 . . . . . . . . . . . . . . 15 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
7 signsvf.n . . . . . . . . . . . . . . . 16 𝑁 = (♯‘𝐸)
87oveq1i 7379 . . . . . . . . . . . . . . 15 (𝑁 − 1) = ((♯‘𝐸) − 1)
9 eldifsn 4746 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
101, 9sylib 218 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
11 lennncl 14475 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
12 fzo0end 13695 . . . . . . . . . . . . . . . 16 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1310, 11, 123syl 18 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
148, 13eqeltrid 2832 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
156, 14ffvelcdmd 7039 . . . . . . . . . . . . 13 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1615recnd 11178 . . . . . . . . . . . 12 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
173, 16eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1817adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℂ)
19 signsvf.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
2019recnd 11178 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2120adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℂ)
22 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) < 0)
2322lt0ne0d 11719 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) ≠ 0)
2418, 21, 23mulne0bad 11809 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ≠ 0)
253, 24eqnetrrid 3000 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐸‘(𝑁 − 1)) ≠ 0)
26 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
27 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
28 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
29 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3026, 27, 28, 29, 7signsvtn0 34534 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
313fveq2i 6843 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3230, 31eqtr4di 2782 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
332, 25, 32syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
3433fveq2d 6844 . . . . . 6 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
353, 15eqeltrid 2832 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ)
3736rexrd 11200 . . . . . . 7 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ*)
38 sgnsgn 32739 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
3937, 38syl 17 . . . . . 6 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4034, 39eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4140oveq2d 7385 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4220, 17mulcomd 11171 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342breq1d 5112 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
44 sgnmulsgn 32740 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4519, 35, 44syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4643, 45bitr3d 281 . . . . 5 (𝜑 → ((𝐵 · 𝐴) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4746biimpa 476 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘𝐵)) < 0)
4841, 47eqbrtrd 5124 . . 3 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0)
4919adantr 480 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℝ)
50 sgnclre 32730 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5136, 50syl 17 . . . . 5 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘𝐵) ∈ ℝ)
5233, 51eqeltrd 2828 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgn 32740 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → ((𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0 ↔ ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0))
5449, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0 ↔ ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0))
5548, 54mpbird 257 . 2 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0)
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2729 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5926, 27, 28, 29, 1, 56, 57, 19, 7, 58signsvtn 34548 . 2 ((𝜑 ∧ (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
6055, 59syldan 591 1 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  c0 4292  ifcif 4484  {csn 4585  {cpr 4587  {ctp 4589  cop 4591   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  *cxr 11183   < clt 11184  cmin 11381  -cneg 11382  cn 12162  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   ++ cconcat 14511  ⟨“cs1 14536  sgncsgn 15028  Σcsu 15628  ndxcnx 17139  Basecbs 17155  +gcplusg 17196   Σg cgsu 17379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-sgn 15029  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mulg 18976  df-cntz 19225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator