Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfnn Structured version   Visualization version   GIF version

Theorem signsvfnn 34618
Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfnn ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfnn
StepHypRef Expression
1 signsvf.e . . . . . . . . 9 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
21adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐸 ∈ (Word ℝ ∖ {∅}))
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
41eldifad 3938 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ Word ℝ)
5 wrdf 14536 . . . . . . . . . . . . . . 15 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
7 signsvf.n . . . . . . . . . . . . . . . 16 𝑁 = (♯‘𝐸)
87oveq1i 7415 . . . . . . . . . . . . . . 15 (𝑁 − 1) = ((♯‘𝐸) − 1)
9 eldifsn 4762 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
101, 9sylib 218 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
11 lennncl 14552 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
12 fzo0end 13774 . . . . . . . . . . . . . . . 16 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1310, 11, 123syl 18 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
148, 13eqeltrid 2838 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
156, 14ffvelcdmd 7075 . . . . . . . . . . . . 13 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1615recnd 11263 . . . . . . . . . . . 12 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
173, 16eqeltrid 2838 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1817adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℂ)
19 signsvf.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
2019recnd 11263 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2120adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℂ)
22 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) < 0)
2322lt0ne0d 11802 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐵 · 𝐴) ≠ 0)
2418, 21, 23mulne0bad 11892 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ≠ 0)
253, 24eqnetrrid 3007 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐸‘(𝑁 − 1)) ≠ 0)
26 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
27 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
28 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
29 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3026, 27, 28, 29, 7signsvtn0 34602 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
313fveq2i 6879 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3230, 31eqtr4di 2788 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
332, 25, 32syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
3433fveq2d 6880 . . . . . 6 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
353, 15eqeltrid 2838 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ)
3736rexrd 11285 . . . . . . 7 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐵 ∈ ℝ*)
38 sgnsgn 32820 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
3937, 38syl 17 . . . . . 6 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4034, 39eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4140oveq2d 7421 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4220, 17mulcomd 11256 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342breq1d 5129 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
44 sgnmulsgn 32821 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4519, 35, 44syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4643, 45bitr3d 281 . . . . 5 (𝜑 → ((𝐵 · 𝐴) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
4746biimpa 476 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘𝐵)) < 0)
4841, 47eqbrtrd 5141 . . 3 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0)
4919adantr 480 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → 𝐴 ∈ ℝ)
50 sgnclre 32811 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5136, 50syl 17 . . . . 5 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (sgn‘𝐵) ∈ ℝ)
5233, 51eqeltrd 2834 . . . 4 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgn 32821 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → ((𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0 ↔ ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0))
5449, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0 ↔ ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) < 0))
5548, 54mpbird 257 . 2 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0)
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2735 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5926, 27, 28, 29, 1, 56, 57, 19, 7, 58signsvtn 34616 . 2 ((𝜑 ∧ (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
6055, 59syldan 591 1 ((𝜑 ∧ (𝐵 · 𝐴) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  c0 4308  ifcif 4500  {csn 4601  {cpr 4603  {ctp 4605  cop 4607   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  *cxr 11268   < clt 11269  cmin 11466  -cneg 11467  cn 12240  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   ++ cconcat 14588  ⟨“cs1 14613  sgncsgn 15105  Σcsu 15702  ndxcnx 17212  Basecbs 17228  +gcplusg 17271   Σg cgsu 17454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-sgn 15106  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mulg 19051  df-cntz 19300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator