MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfnflim Structured version   Visualization version   GIF version

Theorem fclsfnflim 23914
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsfnflim (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem fclsfnflim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filsspw 23738 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
21adantr 480 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ 𝒫 𝑋)
3 fclstop 23898 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
43adantl 481 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ Top)
5 eqid 2729 . . . . . . . . . 10 𝐽 = 𝐽
65neisspw 22994 . . . . . . . . 9 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
74, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
8 filunibas 23768 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
95fclsfil 23897 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
10 filunibas 23768 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
119, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
128, 11sylan9req 2785 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
1312pweqd 4580 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝒫 𝑋 = 𝒫 𝐽)
147, 13sseqtrrd 3984 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
152, 14unssd 4155 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋)
16 ssun1 4141 . . . . . . . 8 𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴}))
17 filn0 23749 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
18 ssn0 4367 . . . . . . . 8 ((𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
1916, 17, 18sylancr 587 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
2019adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
21 incom 4172 . . . . . . . . . . . 12 (𝑦𝑥) = (𝑥𝑦)
22 fclsneii 23904 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑦𝑥) ≠ ∅)
2321, 22eqnetrrid 3000 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑥𝑦) ≠ ∅)
24233com23 1126 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑦) ≠ ∅)
25243expb 1120 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2625adantll 714 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2726ralrimivva 3180 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅)
28 filfbas 23735 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2928adantr 480 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (fBas‘𝑋))
30 istopon 22799 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
314, 12, 30sylanbrc 583 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
325fclselbas 23903 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
3332adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 𝐽)
3433, 12eleqtrrd 2831 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴𝑋)
3534snssd 4773 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ⊆ 𝑋)
36 snnzg 4738 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → {𝐴} ≠ ∅)
3736adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ≠ ∅)
38 neifil 23767 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
3931, 35, 37, 38syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
40 filfbas 23735 . . . . . . . . 9 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4139, 40syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
42 fbunfip 23756 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4329, 41, 42syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4427, 43mpbird 257 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
45 filtop 23742 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
46 fsubbas 23754 . . . . . . . 8 (𝑋𝐹 → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4745, 46syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4847adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4915, 20, 44, 48mpbir3and 1343 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋))
50 fgcl 23765 . . . . 5 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
5149, 50syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
52 fvex 6871 . . . . . . . . 9 ((nei‘𝐽)‘{𝐴}) ∈ V
53 unexg 7719 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ V) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
5452, 53mpan2 691 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
55 ssfii 9370 . . . . . . . 8 ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5654, 55syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5756adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5857unssad 4156 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
59 ssfg 23759 . . . . . 6 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6049, 59syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6158, 60sstrd 3957 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6257unssbd 4157 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
6362, 60sstrd 3957 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
64 elflim 23858 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6531, 51, 64syl2anc 584 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6634, 63, 65mpbir2and 713 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
67 sseq2 3973 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
68 oveq2 7395 . . . . . . 7 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐽 fLim 𝑔) = (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
6968eleq2d 2814 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐴 ∈ (𝐽 fLim 𝑔) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
7067, 69anbi12d 632 . . . . 5 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → ((𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))))
7170rspcev 3588 . . . 4 (((𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7251, 61, 66, 71syl12anc 836 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7372ex 412 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
74 simprl 770 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝑔 ∈ (Fil‘𝑋))
75 simprrr 781 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fLim 𝑔))
76 flimtopon 23857 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7775, 76syl 17 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7874, 77mpbird 257 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐽 ∈ (TopOn‘𝑋))
79 simpl 482 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹 ∈ (Fil‘𝑋))
80 simprrl 780 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹𝑔)
81 fclsss2 23910 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
8278, 79, 80, 81syl3anc 1373 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
83 flimfcls 23913 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
8483, 75sselid 3944 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝑔))
8582, 84sseldd 3947 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝐹))
8685rexlimdvaa 3135 . 2 (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) → 𝐴 ∈ (𝐽 fClus 𝐹)))
8773, 86impbid 212 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871  cfv 6511  (class class class)co 7387  ficfi 9361  fBascfbas 21252  filGencfg 21253  Topctop 22780  TopOnctopon 22797  neicnei 22984  Filcfil 23732   fLim cflim 23821   fClus cfcls 23823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-fin 8922  df-fi 9362  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-fil 23733  df-flim 23826  df-fcls 23828
This theorem is referenced by:  uffclsflim  23918  cnpfcfi  23927
  Copyright terms: Public domain W3C validator