MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfnflim Structured version   Visualization version   GIF version

Theorem fclsfnflim 24036
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsfnflim (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem fclsfnflim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filsspw 23860 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
21adantr 480 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ 𝒫 𝑋)
3 fclstop 24020 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
43adantl 481 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ Top)
5 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
65neisspw 23116 . . . . . . . . 9 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
74, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
8 filunibas 23890 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
95fclsfil 24019 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
10 filunibas 23890 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
119, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
128, 11sylan9req 2797 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
1312pweqd 4616 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝒫 𝑋 = 𝒫 𝐽)
147, 13sseqtrrd 4020 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
152, 14unssd 4191 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋)
16 ssun1 4177 . . . . . . . 8 𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴}))
17 filn0 23871 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
18 ssn0 4403 . . . . . . . 8 ((𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
1916, 17, 18sylancr 587 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
2019adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
21 incom 4208 . . . . . . . . . . . 12 (𝑦𝑥) = (𝑥𝑦)
22 fclsneii 24026 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑦𝑥) ≠ ∅)
2321, 22eqnetrrid 3015 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑥𝑦) ≠ ∅)
24233com23 1126 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑦) ≠ ∅)
25243expb 1120 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2625adantll 714 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2726ralrimivva 3201 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅)
28 filfbas 23857 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2928adantr 480 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (fBas‘𝑋))
30 istopon 22919 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
314, 12, 30sylanbrc 583 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
325fclselbas 24025 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
3332adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 𝐽)
3433, 12eleqtrrd 2843 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴𝑋)
3534snssd 4808 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ⊆ 𝑋)
36 snnzg 4773 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → {𝐴} ≠ ∅)
3736adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ≠ ∅)
38 neifil 23889 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
3931, 35, 37, 38syl3anc 1372 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
40 filfbas 23857 . . . . . . . . 9 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4139, 40syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
42 fbunfip 23878 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4329, 41, 42syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4427, 43mpbird 257 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
45 filtop 23864 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
46 fsubbas 23876 . . . . . . . 8 (𝑋𝐹 → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4745, 46syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4847adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4915, 20, 44, 48mpbir3and 1342 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋))
50 fgcl 23887 . . . . 5 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
5149, 50syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
52 fvex 6918 . . . . . . . . 9 ((nei‘𝐽)‘{𝐴}) ∈ V
53 unexg 7764 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ V) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
5452, 53mpan2 691 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
55 ssfii 9460 . . . . . . . 8 ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5654, 55syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5756adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5857unssad 4192 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
59 ssfg 23881 . . . . . 6 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6049, 59syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6158, 60sstrd 3993 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6257unssbd 4193 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
6362, 60sstrd 3993 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
64 elflim 23980 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6531, 51, 64syl2anc 584 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6634, 63, 65mpbir2and 713 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
67 sseq2 4009 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
68 oveq2 7440 . . . . . . 7 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐽 fLim 𝑔) = (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
6968eleq2d 2826 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐴 ∈ (𝐽 fLim 𝑔) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
7067, 69anbi12d 632 . . . . 5 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → ((𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))))
7170rspcev 3621 . . . 4 (((𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7251, 61, 66, 71syl12anc 836 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7372ex 412 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
74 simprl 770 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝑔 ∈ (Fil‘𝑋))
75 simprrr 781 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fLim 𝑔))
76 flimtopon 23979 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7775, 76syl 17 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7874, 77mpbird 257 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐽 ∈ (TopOn‘𝑋))
79 simpl 482 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹 ∈ (Fil‘𝑋))
80 simprrl 780 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹𝑔)
81 fclsss2 24032 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
8278, 79, 80, 81syl3anc 1372 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
83 flimfcls 24035 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
8483, 75sselid 3980 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝑔))
8582, 84sseldd 3983 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝐹))
8685rexlimdvaa 3155 . 2 (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) → 𝐴 ∈ (𝐽 fClus 𝐹)))
8773, 86impbid 212 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  Vcvv 3479  cun 3948  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906  cfv 6560  (class class class)co 7432  ficfi 9451  fBascfbas 21353  filGencfg 21354  Topctop 22900  TopOnctopon 22917  neicnei 23106  Filcfil 23854   fLim cflim 23943   fClus cfcls 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1o 8507  df-2o 8508  df-en 8987  df-fin 8990  df-fi 9452  df-fbas 21362  df-fg 21363  df-top 22901  df-topon 22918  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-fil 23855  df-flim 23948  df-fcls 23950
This theorem is referenced by:  uffclsflim  24040  cnpfcfi  24049
  Copyright terms: Public domain W3C validator