| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | filsspw 23860 | . . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | 
| 2 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ 𝒫 𝑋) | 
| 3 |  | fclstop 24020 | . . . . . . . . . 10
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) | 
| 4 | 3 | adantl 481 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ Top) | 
| 5 |  | eqid 2736 | . . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 6 | 5 | neisspw 23116 | . . . . . . . . 9
⊢ (𝐽 ∈ Top →
((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 ∪ 𝐽) | 
| 7 | 4, 6 | syl 17 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 ∪ 𝐽) | 
| 8 |  | filunibas 23890 | . . . . . . . . . 10
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) | 
| 9 | 5 | fclsfil 24019 | . . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) | 
| 10 |  | filunibas 23890 | . . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘∪ 𝐽)
→ ∪ 𝐹 = ∪ 𝐽) | 
| 11 | 9, 10 | syl 17 | . . . . . . . . . 10
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → ∪ 𝐹 = ∪
𝐽) | 
| 12 | 8, 11 | sylan9req 2797 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝑋 = ∪ 𝐽) | 
| 13 | 12 | pweqd 4616 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝒫 𝑋 = 𝒫 ∪
𝐽) | 
| 14 | 7, 13 | sseqtrrd 4020 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋) | 
| 15 | 2, 14 | unssd 4191 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋) | 
| 16 |  | ssun1 4177 | . . . . . . . 8
⊢ 𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) | 
| 17 |  | filn0 23871 | . . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | 
| 18 |  | ssn0 4403 | . . . . . . . 8
⊢ ((𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅) | 
| 19 | 16, 17, 18 | sylancr 587 | . . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅) | 
| 20 | 19 | adantr 480 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅) | 
| 21 |  | incom 4208 | . . . . . . . . . . . 12
⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | 
| 22 |  | fclsneii 24026 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥 ∈ 𝐹) → (𝑦 ∩ 𝑥) ≠ ∅) | 
| 23 | 21, 22 | eqnetrrid 3015 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝑦) ≠ ∅) | 
| 24 | 23 | 3com23 1126 | . . . . . . . . . 10
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥 ∩ 𝑦) ≠ ∅) | 
| 25 | 24 | 3expb 1120 | . . . . . . . . 9
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥 ∩ 𝑦) ≠ ∅) | 
| 26 | 25 | adantll 714 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥 ∩ 𝑦) ≠ ∅) | 
| 27 | 26 | ralrimivva 3201 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥 ∩ 𝑦) ≠ ∅) | 
| 28 |  | filfbas 23857 | . . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | 
| 29 | 28 | adantr 480 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (fBas‘𝑋)) | 
| 30 |  | istopon 22919 | . . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | 
| 31 | 4, 12, 30 | sylanbrc 583 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 32 | 5 | fclselbas 24025 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ ∪ 𝐽) | 
| 33 | 32 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ ∪ 𝐽) | 
| 34 | 33, 12 | eleqtrrd 2843 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ 𝑋) | 
| 35 | 34 | snssd 4808 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ⊆ 𝑋) | 
| 36 |  | snnzg 4773 | . . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → {𝐴} ≠ ∅) | 
| 37 | 36 | adantl 481 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ≠ ∅) | 
| 38 |  | neifil 23889 | . . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) | 
| 39 | 31, 35, 37, 38 | syl3anc 1372 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) | 
| 40 |  | filfbas 23857 | . . . . . . . . 9
⊢
(((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) | 
| 41 | 39, 40 | syl 17 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) | 
| 42 |  | fbunfip 23878 | . . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥 ∩ 𝑦) ≠ ∅)) | 
| 43 | 29, 41, 42 | syl2anc 584 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (¬ ∅ ∈
(fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥 ∩ 𝑦) ≠ ∅)) | 
| 44 | 27, 43 | mpbird 257 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ¬ ∅ ∈
(fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴})))) | 
| 45 |  | filtop 23864 | . . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | 
| 46 |  | fsubbas 23876 | . . . . . . . 8
⊢ (𝑋 ∈ 𝐹 → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴})))))) | 
| 47 | 45, 46 | syl 17 | . . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴})))))) | 
| 48 | 47 | adantr 480 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴})))))) | 
| 49 | 15, 20, 44, 48 | mpbir3and 1342 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋)) | 
| 50 |  | fgcl 23887 | . . . . 5
⊢
((fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) | 
| 51 | 49, 50 | syl 17 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) | 
| 52 |  | fvex 6918 | . . . . . . . . 9
⊢
((nei‘𝐽)‘{𝐴}) ∈ V | 
| 53 |  | unexg 7764 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ V) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V) | 
| 54 | 52, 53 | mpan2 691 | . . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V) | 
| 55 |  | ssfii 9460 | . . . . . . . 8
⊢ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) | 
| 56 | 54, 55 | syl 17 | . . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) | 
| 57 | 56 | adantr 480 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) | 
| 58 | 57 | unssad 4192 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) | 
| 59 |  | ssfg 23881 | . . . . . 6
⊢
((fi‘(𝐹 ∪
((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) | 
| 60 | 49, 59 | syl 17 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) | 
| 61 | 58, 60 | sstrd 3993 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) | 
| 62 | 57 | unssbd 4193 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) | 
| 63 | 62, 60 | sstrd 3993 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) | 
| 64 |  | elflim 23980 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) | 
| 65 | 31, 51, 64 | syl2anc 584 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) | 
| 66 | 34, 63, 65 | mpbir2and 713 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))) | 
| 67 |  | sseq2 4009 | . . . . . 6
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))) | 
| 68 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐽 fLim 𝑔) = (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))) | 
| 69 | 68 | eleq2d 2826 | . . . . . 6
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐴 ∈ (𝐽 fLim 𝑔) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) | 
| 70 | 67, 69 | anbi12d 632 | . . . . 5
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → ((𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))) | 
| 71 | 70 | rspcev 3621 | . . . 4
⊢ (((𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) | 
| 72 | 51, 61, 66, 71 | syl12anc 836 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) | 
| 73 | 72 | ex 412 | . 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) | 
| 74 |  | simprl 770 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝑔 ∈ (Fil‘𝑋)) | 
| 75 |  | simprrr 781 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fLim 𝑔)) | 
| 76 |  | flimtopon 23979 | . . . . . . 7
⊢ (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋))) | 
| 77 | 75, 76 | syl 17 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋))) | 
| 78 | 74, 77 | mpbird 257 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 79 |  | simpl 482 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹 ∈ (Fil‘𝑋)) | 
| 80 |  | simprrl 780 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹 ⊆ 𝑔) | 
| 81 |  | fclsss2 24032 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑔) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹)) | 
| 82 | 78, 79, 80, 81 | syl3anc 1372 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹)) | 
| 83 |  | flimfcls 24035 | . . . . 5
⊢ (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔) | 
| 84 | 83, 75 | sselid 3980 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝑔)) | 
| 85 | 82, 84 | sseldd 3983 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝐹)) | 
| 86 | 85 | rexlimdvaa 3155 | . 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)) → 𝐴 ∈ (𝐽 fClus 𝐹))) | 
| 87 | 73, 86 | impbid 212 | 1
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) |