MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfnflim Structured version   Visualization version   GIF version

Theorem fclsfnflim 23970
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsfnflim (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem fclsfnflim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filsspw 23794 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
21adantr 480 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ 𝒫 𝑋)
3 fclstop 23954 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
43adantl 481 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ Top)
5 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
65neisspw 23050 . . . . . . . . 9 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
74, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
8 filunibas 23824 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
95fclsfil 23953 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
10 filunibas 23824 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
119, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
128, 11sylan9req 2792 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
1312pweqd 4597 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝒫 𝑋 = 𝒫 𝐽)
147, 13sseqtrrd 4001 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
152, 14unssd 4172 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋)
16 ssun1 4158 . . . . . . . 8 𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴}))
17 filn0 23805 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
18 ssn0 4384 . . . . . . . 8 ((𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
1916, 17, 18sylancr 587 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
2019adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
21 incom 4189 . . . . . . . . . . . 12 (𝑦𝑥) = (𝑥𝑦)
22 fclsneii 23960 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑦𝑥) ≠ ∅)
2321, 22eqnetrrid 3008 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑥𝑦) ≠ ∅)
24233com23 1126 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑦) ≠ ∅)
25243expb 1120 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2625adantll 714 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2726ralrimivva 3188 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅)
28 filfbas 23791 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2928adantr 480 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (fBas‘𝑋))
30 istopon 22855 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
314, 12, 30sylanbrc 583 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
325fclselbas 23959 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
3332adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 𝐽)
3433, 12eleqtrrd 2838 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴𝑋)
3534snssd 4790 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ⊆ 𝑋)
36 snnzg 4755 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → {𝐴} ≠ ∅)
3736adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ≠ ∅)
38 neifil 23823 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
3931, 35, 37, 38syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
40 filfbas 23791 . . . . . . . . 9 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4139, 40syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
42 fbunfip 23812 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4329, 41, 42syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4427, 43mpbird 257 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
45 filtop 23798 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
46 fsubbas 23810 . . . . . . . 8 (𝑋𝐹 → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4745, 46syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4847adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4915, 20, 44, 48mpbir3and 1343 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋))
50 fgcl 23821 . . . . 5 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
5149, 50syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
52 fvex 6894 . . . . . . . . 9 ((nei‘𝐽)‘{𝐴}) ∈ V
53 unexg 7742 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ V) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
5452, 53mpan2 691 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
55 ssfii 9436 . . . . . . . 8 ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5654, 55syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5756adantr 480 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5857unssad 4173 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
59 ssfg 23815 . . . . . 6 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6049, 59syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6158, 60sstrd 3974 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6257unssbd 4174 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
6362, 60sstrd 3974 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
64 elflim 23914 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6531, 51, 64syl2anc 584 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6634, 63, 65mpbir2and 713 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
67 sseq2 3990 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
68 oveq2 7418 . . . . . . 7 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐽 fLim 𝑔) = (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
6968eleq2d 2821 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐴 ∈ (𝐽 fLim 𝑔) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
7067, 69anbi12d 632 . . . . 5 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → ((𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))))
7170rspcev 3606 . . . 4 (((𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7251, 61, 66, 71syl12anc 836 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7372ex 412 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
74 simprl 770 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝑔 ∈ (Fil‘𝑋))
75 simprrr 781 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fLim 𝑔))
76 flimtopon 23913 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7775, 76syl 17 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7874, 77mpbird 257 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐽 ∈ (TopOn‘𝑋))
79 simpl 482 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹 ∈ (Fil‘𝑋))
80 simprrl 780 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹𝑔)
81 fclsss2 23966 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
8278, 79, 80, 81syl3anc 1373 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
83 flimfcls 23969 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
8483, 75sselid 3961 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝑔))
8582, 84sseldd 3964 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝐹))
8685rexlimdvaa 3143 . 2 (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) → 𝐴 ∈ (𝐽 fClus 𝐹)))
8773, 86impbid 212 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888  cfv 6536  (class class class)co 7410  ficfi 9427  fBascfbas 21308  filGencfg 21309  Topctop 22836  TopOnctopon 22853  neicnei 23040  Filcfil 23788   fLim cflim 23877   fClus cfcls 23879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1o 8485  df-2o 8486  df-en 8965  df-fin 8968  df-fi 9428  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-fil 23789  df-flim 23882  df-fcls 23884
This theorem is referenced by:  uffclsflim  23974  cnpfcfi  23983
  Copyright terms: Public domain W3C validator