MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3017
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 3010 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 3009 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-cleq 2724  df-ne 2941
This theorem is referenced by:  subrgnzr  20377  clmopfne  24603  dchrisum0re  27005  qsnzr  32562  algextdeglem1  32760  cdlemg9a  39491  cdlemg11aq  39497  cdlemg12b  39503  cdlemg12  39509  cdlemg13  39511  cdlemg19  39543  cdlemk3  39692  cdlemk12  39709  cdlemk12u  39731  lclkrlem2g  40372  mapdncol  40529  mapdpglem29  40559  hdmaprnlem1N  40708  hdmap14lem9  40735  aks6d1c2p2  40945  ricdrng1  41099  pellex  41558
  Copyright terms: Public domain W3C validator