MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3001
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 2994 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 2993 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926
This theorem is referenced by:  subrgnzr  20497  clmopfne  25012  dchrisum0re  27440  fracfld  33257  qsnzr  33402  dimlssid  33604  algextdeglem4  33686  constrrtll  33697  cdlemg9a  40611  cdlemg11aq  40617  cdlemg12b  40623  cdlemg12  40629  cdlemg13  40631  cdlemg19  40663  cdlemk3  40812  cdlemk12  40829  cdlemk12u  40851  lclkrlem2g  41492  mapdncol  41649  mapdpglem29  41679  hdmaprnlem1N  41828  hdmap14lem9  41855  aks6d1c2p2  42092  ricdrng1  42501  pellex  42808
  Copyright terms: Public domain W3C validator