| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | neeqtrd 3001 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| 5 | 1, 4 | eqnetrrd 3000 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 |
| This theorem is referenced by: subrgnzr 20554 clmopfne 25047 dchrisum0re 27476 fracfld 33302 qsnzr 33470 dimlssid 33672 algextdeglem4 33754 constrrtll 33765 cdlemg9a 40651 cdlemg11aq 40657 cdlemg12b 40663 cdlemg12 40669 cdlemg13 40671 cdlemg19 40703 cdlemk3 40852 cdlemk12 40869 cdlemk12u 40891 lclkrlem2g 41532 mapdncol 41689 mapdpglem29 41719 hdmaprnlem1N 41868 hdmap14lem9 41895 aks6d1c2p2 42132 ricdrng1 42551 pellex 42858 |
| Copyright terms: Public domain | W3C validator |