![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | neeqtrd 3010 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
5 | 1, 4 | eqnetrrd 3009 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-ne 2941 |
This theorem is referenced by: subrgnzr 20377 clmopfne 24603 dchrisum0re 27005 qsnzr 32562 algextdeglem1 32760 cdlemg9a 39491 cdlemg11aq 39497 cdlemg12b 39503 cdlemg12 39509 cdlemg13 39511 cdlemg19 39543 cdlemk3 39692 cdlemk12 39709 cdlemk12u 39731 lclkrlem2g 40372 mapdncol 40529 mapdpglem29 40559 hdmaprnlem1N 40708 hdmap14lem9 40735 aks6d1c2p2 40945 ricdrng1 41099 pellex 41558 |
Copyright terms: Public domain | W3C validator |