MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3018
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 3011 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 3010 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-ne 2942
This theorem is referenced by:  subrgnzr  20341  clmopfne  24612  dchrisum0re  27016  qsnzr  32605  algextdeglem1  32803  cdlemg9a  39551  cdlemg11aq  39557  cdlemg12b  39563  cdlemg12  39569  cdlemg13  39571  cdlemg19  39603  cdlemk3  39752  cdlemk12  39769  cdlemk12u  39791  lclkrlem2g  40432  mapdncol  40589  mapdpglem29  40619  hdmaprnlem1N  40768  hdmap14lem9  40795  aks6d1c2p2  41005  ricdrng1  41150  pellex  41621
  Copyright terms: Public domain W3C validator