Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | neeqtrd 3011 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
5 | 1, 4 | eqnetrrd 3010 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-ne 2942 |
This theorem is referenced by: subrgnzr 20584 clmopfne 24304 dchrisum0re 26706 cdlemg9a 38688 cdlemg11aq 38694 cdlemg12b 38700 cdlemg12 38706 cdlemg13 38708 cdlemg19 38740 cdlemk3 38889 cdlemk12 38906 cdlemk12u 38928 lclkrlem2g 39569 mapdncol 39726 mapdpglem29 39756 hdmaprnlem1N 39905 hdmap14lem9 39932 pellex 40694 |
Copyright terms: Public domain | W3C validator |