MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3001
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 2994 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 2993 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926
This theorem is referenced by:  subrgnzr  20503  clmopfne  24996  dchrisum0re  27424  fracfld  33258  qsnzr  33426  dimlssid  33628  algextdeglem4  33710  constrrtll  33721  cdlemg9a  40626  cdlemg11aq  40632  cdlemg12b  40638  cdlemg12  40644  cdlemg13  40646  cdlemg19  40678  cdlemk3  40827  cdlemk12  40844  cdlemk12u  40866  lclkrlem2g  41507  mapdncol  41664  mapdpglem29  41694  hdmaprnlem1N  41843  hdmap14lem9  41870  aks6d1c2p2  42107  ricdrng1  42516  pellex  42823
  Copyright terms: Public domain W3C validator