MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3002
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 2995 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 2994 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ne 2927
This theorem is referenced by:  subrgnzr  20510  clmopfne  25003  dchrisum0re  27431  fracfld  33265  qsnzr  33433  dimlssid  33635  algextdeglem4  33717  constrrtll  33728  cdlemg9a  40633  cdlemg11aq  40639  cdlemg12b  40645  cdlemg12  40651  cdlemg13  40653  cdlemg19  40685  cdlemk3  40834  cdlemk12  40851  cdlemk12u  40873  lclkrlem2g  41514  mapdncol  41671  mapdpglem29  41701  hdmaprnlem1N  41850  hdmap14lem9  41877  aks6d1c2p2  42114  ricdrng1  42523  pellex  42830
  Copyright terms: Public domain W3C validator