MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3018
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 3011 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 3010 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-cleq 2728  df-ne 2942
This theorem is referenced by:  subrgnzr  20584  clmopfne  24304  dchrisum0re  26706  cdlemg9a  38688  cdlemg11aq  38694  cdlemg12b  38700  cdlemg12  38706  cdlemg13  38708  cdlemg19  38740  cdlemk3  38889  cdlemk12  38906  cdlemk12u  38928  lclkrlem2g  39569  mapdncol  39726  mapdpglem29  39756  hdmaprnlem1N  39905  hdmap14lem9  39932  pellex  40694
  Copyright terms: Public domain W3C validator