| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | neeqtrd 2997 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| 5 | 1, 4 | eqnetrrd 2996 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: subrgnzr 20507 clmopfne 25021 dchrisum0re 27449 fracfld 33269 qsnzr 33415 dimlssid 33640 algextdeglem4 33728 constrrtll 33739 cdlemg9a 40670 cdlemg11aq 40676 cdlemg12b 40682 cdlemg12 40688 cdlemg13 40690 cdlemg19 40722 cdlemk3 40871 cdlemk12 40888 cdlemk12u 40910 lclkrlem2g 41551 mapdncol 41708 mapdpglem29 41738 hdmaprnlem1N 41887 hdmap14lem9 41914 aks6d1c2p2 42151 ricdrng1 42560 pellex 42867 |
| Copyright terms: Public domain | W3C validator |