| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | neeqtrd 2994 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| 5 | 1, 4 | eqnetrrd 2993 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: subrgnzr 20497 clmopfne 25012 dchrisum0re 27440 fracfld 33257 qsnzr 33402 dimlssid 33604 algextdeglem4 33686 constrrtll 33697 cdlemg9a 40611 cdlemg11aq 40617 cdlemg12b 40623 cdlemg12 40629 cdlemg13 40631 cdlemg19 40663 cdlemk3 40812 cdlemk12 40829 cdlemk12u 40851 lclkrlem2g 41492 mapdncol 41649 mapdpglem29 41679 hdmaprnlem1N 41828 hdmap14lem9 41855 aks6d1c2p2 42092 ricdrng1 42501 pellex 42808 |
| Copyright terms: Public domain | W3C validator |