![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | neeqtrd 3011 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
5 | 1, 4 | eqnetrrd 3010 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ne 2942 |
This theorem is referenced by: subrgnzr 20341 clmopfne 24612 dchrisum0re 27016 qsnzr 32605 algextdeglem1 32803 cdlemg9a 39551 cdlemg11aq 39557 cdlemg12b 39563 cdlemg12 39569 cdlemg13 39571 cdlemg19 39603 cdlemk3 39752 cdlemk12 39769 cdlemk12u 39791 lclkrlem2g 40432 mapdncol 40589 mapdpglem29 40619 hdmaprnlem1N 40768 hdmap14lem9 40795 aks6d1c2p2 41005 ricdrng1 41150 pellex 41621 |
Copyright terms: Public domain | W3C validator |