![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | neeqtrd 3009 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
5 | 1, 4 | eqnetrrd 3008 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2940 |
This theorem is referenced by: subrgnzr 20492 clmopfne 24943 dchrisum0re 27359 qsnzr 33014 algextdeglem4 33231 cdlemg9a 39967 cdlemg11aq 39973 cdlemg12b 39979 cdlemg12 39985 cdlemg13 39987 cdlemg19 40019 cdlemk3 40168 cdlemk12 40185 cdlemk12u 40207 lclkrlem2g 40848 mapdncol 41005 mapdpglem29 41035 hdmaprnlem1N 41184 hdmap14lem9 41211 aks6d1c2p2 41424 ricdrng1 41567 pellex 42036 |
Copyright terms: Public domain | W3C validator |