MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3010
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 3003 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 3002 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wne 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-cleq 2730  df-ne 2935
This theorem is referenced by:  subrgnzr  20160  clmopfne  23848  dchrisum0re  26249  cdlemg9a  38269  cdlemg11aq  38275  cdlemg12b  38281  cdlemg12  38287  cdlemg13  38289  cdlemg19  38321  cdlemk3  38470  cdlemk12  38487  cdlemk12u  38509  lclkrlem2g  39150  mapdncol  39307  mapdpglem29  39337  hdmaprnlem1N  39486  hdmap14lem9  39513  pellex  40229
  Copyright terms: Public domain W3C validator