| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr3d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3netr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3netr3d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3netr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 3netr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | neeqtrd 2994 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| 5 | 1, 4 | eqnetrrd 2993 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: subrgnzr 20503 clmopfne 24996 dchrisum0re 27424 fracfld 33258 qsnzr 33426 dimlssid 33628 algextdeglem4 33710 constrrtll 33721 cdlemg9a 40626 cdlemg11aq 40632 cdlemg12b 40638 cdlemg12 40644 cdlemg13 40646 cdlemg19 40678 cdlemk3 40827 cdlemk12 40844 cdlemk12u 40866 lclkrlem2g 41507 mapdncol 41664 mapdpglem29 41694 hdmaprnlem1N 41843 hdmap14lem9 41870 aks6d1c2p2 42107 ricdrng1 42516 pellex 42823 |
| Copyright terms: Public domain | W3C validator |