MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr3d Structured version   Visualization version   GIF version

Theorem 3netr3d 3008
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
3netr3d.1 (𝜑𝐴𝐵)
3netr3d.2 (𝜑𝐴 = 𝐶)
3netr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3netr3d (𝜑𝐶𝐷)

Proof of Theorem 3netr3d
StepHypRef Expression
1 3netr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3netr3d.1 . . 3 (𝜑𝐴𝐵)
3 3netr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3neeqtrd 3001 . 2 (𝜑𝐴𝐷)
51, 4eqnetrrd 3000 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ne 2933
This theorem is referenced by:  subrgnzr  20554  clmopfne  25047  dchrisum0re  27476  fracfld  33302  qsnzr  33470  dimlssid  33672  algextdeglem4  33754  constrrtll  33765  cdlemg9a  40651  cdlemg11aq  40657  cdlemg12b  40663  cdlemg12  40669  cdlemg13  40671  cdlemg19  40703  cdlemk3  40852  cdlemk12  40869  cdlemk12u  40891  lclkrlem2g  41532  mapdncol  41689  mapdpglem29  41719  hdmaprnlem1N  41868  hdmap14lem9  41895  aks6d1c2p2  42132  ricdrng1  42551  pellex  42858
  Copyright terms: Public domain W3C validator